Free Access
Volume 16, Number 4, October-December 2010
Page(s) 1077 - 1093
Published online 25 August 2009
  1. A. Cheng and K. Morris, Well-posedness of boundary control systems. SIAM J. Control Optim. 42 (2003) 1244–1265. [CrossRef] [MathSciNet] [Google Scholar]
  2. R.F. Curtain and H.J. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory. Springer-Verlag, New York, USA (1995). [Google Scholar]
  3. R. Dáger and E. Zuazua, Wave Propagation, Observation and Control in 1-d Flexible Multi-structures, Matématiques & Applications 50. Springer-Verlag (2006). [Google Scholar]
  4. K.-J. Engel, M. Kramar Fijavž, R. Nagel, E. Sikolya, Vertex control of flows in networks. Netw. Heterog. Media 3 (2008) 709–722. [CrossRef] [MathSciNet] [Google Scholar]
  5. B.-Z. Guo and Z.-C. Shao, Regularity of a Schödinger equation with Dirichlet control and collocated observation. Syst. Contr. Lett. 54 (2005) 1135–1142. [CrossRef] [Google Scholar]
  6. B.-Z. Guo and Z.-C. Shao, Regularity of an Euler-Bernoulli equation with Neumann control and collocated observation. J. Dyn. Contr. Syst. 12 (2006) 405–418. [CrossRef] [Google Scholar]
  7. B.-Z. Guo and Z.-X. Zhang, The regularity of the wave equation with partial Dirichlet control and collocated observation. SIAM J. Control Optim. 44 (2005) 1598–1613. [CrossRef] [MathSciNet] [Google Scholar]
  8. B.-Z. Guo and Z.-X. Zhang, Well-posedness and regularity for an Euler-Bernoulli plate with variable coefficients and boundary control and observation. MCSS 19 (2007) 337–360. [Google Scholar]
  9. B.-Z. Guo and Z.-X. Zhang, On the well-posedness and regularity of the wave equation with variable coefficients. ESAIM: COCV 13 (2007) 776–792. [CrossRef] [EDP Sciences] [Google Scholar]
  10. B.-Z. Guo and Z.-X. Zhang, Well-posedness of systems of linear elasticity with Dirichlet boundary control and observation. SIAM J. Control Optim. 48 (2009) 2139–2167. [CrossRef] [MathSciNet] [Google Scholar]
  11. T. Kato, Perturbation Theory for Linear Operators. Corrected printing of the second edition, Springer-Verlag, Berlin, Germany (1980). [Google Scholar]
  12. I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations I, Encyclopedia of Mathematics and its Applications 74. Cambridge University Press (2000). [Google Scholar]
  13. I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations II, Encyclopedia of Mathematics and its Applications 75. Cambridge University Press (2000). [Google Scholar]
  14. Y. Le Gorrec, B.M. Maschke, H. Zwart and J.A. Villegas, Dissipative boundary control systems with application to distributed parameters reactors, in Proc. IEEE International Conference on Control Applications, Munich, Germany, October 4–6 (2006) 668–673. [Google Scholar]
  15. Y. Le Gorrec, H. Zwart and B. Maschke, Dirac structures and boundary control systems associated with skew-symmetric differential operators. SIAM J. Control Optim. 44 (2005) 1864–1892. A more detailed version is available at, Memorandum No. 1730 (2004). [Google Scholar]
  16. Z.-H. Luo, B.-Z. Guo and O. Morgul, Stability and Stabilization of Infinite-Dimensional Systems with Applications. Springer-Verlag (1999). [Google Scholar]
  17. A. Macchelli and C. Melchiorri, Modeling and control of the Timoshenko beam, The distributed port Hamiltonian approach. SIAM J. Control Optim. 43 (2004) 743–767. [CrossRef] [MathSciNet] [Google Scholar]
  18. B. Maschke and A.J. van der Schaft,Compositional modelling of distributed-parameter systems, in Advanced Topics in Control Systems Theory – Lecture Notes from FAP 2004, Lecture Notes in Control and Information Sciences, F. Lamnabhi-Lagarrigue, A. Loría and E. Panteley Eds., Springer (2005) 115–154. [Google Scholar]
  19. J. Malinen, Conservatively of time-flow invertible and boundary control systems. Research Report A479, Institute of Mathematics, Helsinki University of Technology, Finland (2004). See also Proceedings of the Joint 44th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC'05). [Google Scholar]
  20. R.S. Phillips, Dissipative operators and hyperbolic systems of partial differential equations. Trans. Amer. Math. Soc. 90 (1959) 193–254. [MathSciNet] [Google Scholar]
  21. D.L. Russell, Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions. SIAM Review 20 (1978) 639–739. [CrossRef] [MathSciNet] [Google Scholar]
  22. A.J. van der Schaft and B.M. Maschke, Hamiltonian formulation of distributed parameter systems with boundary energy flow. J. Geometry Physics 42 (2002) 166–174. [Google Scholar]
  23. O. Staffans, Well-posed Linear Systems, Encyclopedia of Mathematics and its Applications 103. Cambridge University Press (2005). [Google Scholar]
  24. M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Advanced Texts. Basler Lehrbücher (2009). [Google Scholar]
  25. J.A. Villegas, A Port-Hamiltonian Approach to Distributed Parameter Systems. Ph.D. Thesis, University of Twente, The Netherlands (2007). Available at [Google Scholar]
  26. G. Weiss, Regular linear systems with feedback. Math. Control Signals Syst. 7 (1994) 23–57. [CrossRef] [Google Scholar]
  27. G. Weiss and R.F. Curtain, Exponential stabilization of a Rayleigh beam using collocated control. IEEE Trans. Automat. Contr. 53 (2008) 643–654. [Google Scholar]
  28. H. Zwart, Transfer functions for infinite-dimensional systems. Syst. Contr. Lett. 52 (2004) 247–255. [CrossRef] [Google Scholar]
  29. H. Zwart, Y. Le Gorrec, B.M.J. Maschke and J.A. Villegas, Well-posedness and regularity for a class of hyperbolic boundary control systems, in Proceedings of the 17th International Symposium on Mathematical Theory of Networks and Systems, Kyoto, Japan (2006) 1379–1883. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.