Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

EURAD state-of-the-art report: development and improvement of numerical methods and tools for modeling coupled processes in the field of nuclear waste disposal

F. Claret, N. I. Prasianakis, A. Baksay, D. Lukin, G. Pepin, E. Ahusborde, B. Amaziane, G. Bátor, D. Becker, A. Bednár, M. Béreš, S. Bérešová, Z. Böthi, V. Brendler, K. Brenner, J. Březina, F. Chave, S. V. Churakov, M. Hokr, D. Horák, D. Jacques, F. Jankovský, C. Kazymyrenko, T. Koudelka, T. Kovács, et al.
Frontiers in Nuclear Engineering 3 (2024)
https://doi.org/10.3389/fnuen.2024.1437714

Positivity Preserving and Mass Conservative Projection Method for the Poisson–Nernst–Planck Equation

Fenghua Tong and Yongyong Cai
SIAM Journal on Numerical Analysis 62 (4) 2004 (2024)
https://doi.org/10.1137/23M1581649

Construction of a two-phase flow with singular energy by gradient flow methods

Clément Cancès and Daniel Matthes
Journal of Differential Equations 344 439 (2023)
https://doi.org/10.1016/j.jde.2022.11.010

Exponential Convergence to Equilibrium for Coupled Systems of Nonlinear Degenerate Drift Diffusion Equations

Lisa Beck, Daniel Matthes and Martina Zizza
SIAM Journal on Mathematical Analysis 55 (3) 1766 (2023)
https://doi.org/10.1137/21M1466980

The relaxation limit of bipolar fluid models

Nuno J. Alves and Athanasios E. Tzavaras
Discrete & Continuous Dynamical Systems 42 (1) 211 (2022)
https://doi.org/10.3934/dcds.2021113

High-order space–time finite element methods for the Poisson–Nernst–Planck equations: Positivity and unconditional energy stability

Guosheng Fu and Zhiliang Xu
Computer Methods in Applied Mechanics and Engineering 395 115031 (2022)
https://doi.org/10.1016/j.cma.2022.115031

Gradient Flow Formulations of Discrete and Continuous Evolutionary Models: A Unifying Perspective

Fabio A. C. C. Chalub, Léonard Monsaingeon, Ana Margarida Ribeiro and Max O. Souza
Acta Applicandae Mathematicae 171 (1) (2021)
https://doi.org/10.1007/s10440-021-00391-9

A variational finite volume scheme for Wasserstein gradient flows

Clément Cancès, Thomas O. Gallouët and Gabriele Todeschi
Numerische Mathematik 146 (3) 437 (2020)
https://doi.org/10.1007/s00211-020-01153-9

Global existence of the non-isothermal Poisson–Nernst–Planck–Fourier system

Chia-Yu Hsieh, Tai-Chia Lin, Chun Liu and Pei Liu
Journal of Differential Equations 269 (9) 7287 (2020)
https://doi.org/10.1016/j.jde.2020.05.037

Gradient flows and Evolution Variational Inequalities in metric spaces. I: Structural properties

Matteo Muratori and Giuseppe Savaré
Journal of Functional Analysis 278 (4) 108347 (2020)
https://doi.org/10.1016/j.jfa.2019.108347

An unbalanced optimal transport splitting scheme for general advection-reaction-diffusion problems

Thomas Gallouët, Maxime Laborde and Léonard Monsaingeon
ESAIM: Control, Optimisation and Calculus of Variations 25 8 (2019)
https://doi.org/10.1051/cocv/2018001

Incompressible immiscible multiphase flows in porous media: a variational approach

Clément Cancès, Thomas O. Gallouët and Léonard Monsaingeon
Analysis & PDE 10 (8) 1845 (2017)
https://doi.org/10.2140/apde.2017.10.1845

High-frequency limit of non-autonomous gradient flows of functionals with time-periodic forcing

Simon Plazotta and Jonathan Zinsl
Journal of Differential Equations 261 (12) 6806 (2016)
https://doi.org/10.1016/j.jde.2016.09.003

Exponential convergence to equilibrium in a Poisson-Nernst-Planck-type system with nonlinear diffusion

Jonathan Zinsl
Discrete and Continuous Dynamical Systems 36 (5) 2915 (2015)
https://doi.org/10.3934/dcds.2016.36.2915

A hybrid variational principle for the Keller–Segel system in ℝ2

Adrien Blanchet, José Antonio Carrillo, David Kinderlehrer, et al.
ESAIM: Mathematical Modelling and Numerical Analysis 49 (6) 1553 (2015)
https://doi.org/10.1051/m2an/2015021