The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
Karl Kunisch , Daniel Walter
ESAIM: COCV, 27 (2021) 16
Published online: 2021-03-22
This article has been cited by the following article(s):
27 articles
State Dependent Riccati for dynamic boundary control to optimize irrigation in Richards’ equation framework
Alessandro Alla, Marco Berardi and Luca Saluzzi Mathematics and Computers in Simulation 232 261 (2025) https://doi.org/10.1016/j.matcom.2024.12.020
Numerical Realization of the Mortensen Observer via a Hessian-Augmented Polynomial Approximation of the Value Function
Tobias Breiten, Karl K. Kunisch and Jesper Schröder SIAM Journal on Scientific Computing 47 (1) A181 (2025) https://doi.org/10.1137/23M1613773
Optimal control for quadrotors UAV based on deep neural network approximations of stable manifold of HJB equation
Yuhuan Yue Automatika 66 (2) 201 (2025) https://doi.org/10.1080/00051144.2025.2461827
Sample Size Estimates for Risk-Neutral Semilinear PDE-Constrained Optimization
Johannes Milz and Michael Ulbrich SIAM Journal on Optimization 34 (1) 844 (2024) https://doi.org/10.1137/22M1512636
A Comparison Study of Supervised Learning Techniques for the Approximation of High Dimensional Functions and Feedback Control
Mathias Oster, Luca Saluzzi and Tizian Wenzel Dynamic Games and Applications (2024) https://doi.org/10.1007/s13235-024-00610-6
A Neural Network Approach for Stochastic Optimal Control
Xingjian Li, Deepanshu Verma and Lars Ruthotto SIAM Journal on Scientific Computing 46 (5) C535 (2024) https://doi.org/10.1137/23M155832X
Neural network approaches for parameterized optimal control
Deepanshu Verma, Nick Winovich, Lars Ruthotto and Bart van Bloemen Waanders Foundations of Data Science (2024) https://doi.org/10.3934/fods.2024042
Offline supervised learning v.s. online direct policy optimization: A comparative study and a unified training paradigm for neural network-based optimal feedback control
Yue Zhao and Jiequn Han Physica D: Nonlinear Phenomena 462 134130 (2024) https://doi.org/10.1016/j.physd.2024.134130
Deep Neural Network Approximations for the Stable Manifolds of the Hamilton–Jacobi–Bellman Equations
Guoyuan Chen IEEE Transactions on Automatic Control 69 (10) 7239 (2024) https://doi.org/10.1109/TAC.2024.3396107
Hermite kernel surrogates for the value function of high-dimensional nonlinear optimal control problems
Tobias Ehring and Bernard Haasdonk Advances in Computational Mathematics 50 (3) (2024) https://doi.org/10.1007/s10444-024-10128-5
Consistent smooth approximation of feedback laws for infinite horizon control problems with non-smooth value functions
Karl Kunisch and Donato Vásquez-Varas Journal of Differential Equations 411 438 (2024) https://doi.org/10.1016/j.jde.2024.08.010
A Multilinear HJB-POD Method for the Optimal Control of PDEs on a Tree Structure
Gerhard Kirsten and Luca Saluzzi Journal of Scientific Computing 101 (2) (2024) https://doi.org/10.1007/s10915-024-02683-2
BC-PINN: an adaptive physics informed neural network based on biased multiobjective coevolutionary algorithm
Zhicheng Zhu, Jia Hao, Jin Huang and Biao Huang Neural Computing and Applications 35 (28) 21093 (2023) https://doi.org/10.1007/s00521-023-08876-4
State-dependent Riccati equation feedback stabilization for nonlinear PDEs
Alessandro Alla, Dante Kalise and Valeria Simoncini Advances in Computational Mathematics 49 (1) (2023) https://doi.org/10.1007/s10444-022-09998-4
A two-stage deep-learning-based balancing method for rotating machinery
Shun Zhong, Hong-Xiang Han and Lei Hou Measurement Science and Technology 34 (4) 045903 (2023) https://doi.org/10.1088/1361-6501/acabdd
A Neural Network Approach for High-Dimensional Optimal Control Applied to Multiagent Path Finding
Derek Onken, Levon Nurbekyan, Xingjian Li, et al. IEEE Transactions on Control Systems Technology 31 (1) 235 (2023) https://doi.org/10.1109/TCST.2022.3172872
Numerical Control: Part B
Peter Benner and Michael Hinze Handbook of Numerical Analysis, Numerical Control: Part B 24 77 (2023) https://doi.org/10.1016/bs.hna.2022.12.002
Relaxation approach for learning neural network regularizers for a class of identification problems
Sébastien Court Inverse Problems 39 (12) 125011 (2023) https://doi.org/10.1088/1361-6420/ad0756
Optimal polynomial feedback laws for finite horizon control problems
Karl Kunisch and Donato Vásquez-Varas Computers & Mathematics with Applications 148 113 (2023) https://doi.org/10.1016/j.camwa.2023.08.004
Synchronization of reaction‐diffusion neural networks with distributed delay via quantized boundary control
Chuan Zhang, Han Xiang, Xianfu Zhang, Yingxin Guo and Hao Zhang International Journal of Adaptive Control and Signal Processing 37 (5) 1166 (2023) https://doi.org/10.1002/acs.3567
Data-Driven Tensor Train Gradient Cross Approximation for Hamilton–Jacobi–Bellman Equations
Sergey Dolgov, Dante Kalise and Luca Saluzzi SIAM Journal on Scientific Computing 45 (5) A2153 (2023) https://doi.org/10.1137/22M1498401
Neural Network Optimal Feedback Control With Guaranteed Local Stability
Tenavi Nakamura-Zimmerer, Qi Gong and Wei Kang IEEE Open Journal of Control Systems 1 210 (2022) https://doi.org/10.1109/OJCSYS.2022.3205863
Tenavi Nakamura-Zimmerer, Qi Gong and Wei Kang 2373 (2022) https://doi.org/10.23919/ACC53348.2022.9867619
Gradient-augmented Supervised Learning of Optimal Feedback Laws Using State-Dependent Riccati Equations
Giacomo Albi, Sara Bicego and Dante Kalise IEEE Control Systems Letters 6 836 (2022) https://doi.org/10.1109/LCSYS.2021.3086697
An Approximation Scheme for Distributionally Robust PDE-Constrained Optimization
Johannes Milz and Michael Ulbrich SIAM Journal on Control and Optimization 60 (3) 1410 (2022) https://doi.org/10.1137/20M134664X
Tensor Decomposition Methods for High-dimensional Hamilton--Jacobi--Bellman Equations
Sergey Dolgov, Dante Kalise and Karl K. Kunisch SIAM Journal on Scientific Computing 43 (3) A1625 (2021) https://doi.org/10.1137/19M1305136
Learning an Optimal Feedback Operator Semiglobally Stabilizing Semilinear Parabolic Equations
Karl Kunisch, Sérgio S. Rodrigues and Daniel Walter Applied Mathematics & Optimization 84 (S1) 277 (2021) https://doi.org/10.1007/s00245-021-09769-5