Free Access
Issue
ESAIM: COCV
Volume 27, 2021
Article Number 16
Number of page(s) 59
DOI https://doi.org/10.1051/cocv/2021009
Published online 22 March 2021
  1. R. Bellman, Adaptive control processes: A guided tour. (A RAND Corporation Research Study). Princeton University Press, XVI, Princeton, N.J. (1961). [Google Scholar]
  2. D. Bertsekas, Multiagent rollout algorithms and reinforcement learning (2019). [Google Scholar]
  3. D. Bertsekas, Reinforcement Learning and Optimal Control. Athena Scientific (2019). [Google Scholar]
  4. T. Breiten, K. Kunisch and L. Pfeiffer, Infinite-horizon bilinear optimal control problems: Sensitivity analysis and polynomial feedback laws. SIAM J. Control Optim. 56 (2018) 3184–3214. [Google Scholar]
  5. T. Breiten, K. Kunisch and L. Pfeiffer, Numerical study of polynomial feedback laws for a bilinear control problem. Math. Control Relat. Fields 8 (2018) 557–582. [CrossRef] [Google Scholar]
  6. T. Breiten, K. Kunisch and L. Pfeiffer, Feedback stabilization of the two-dimensional Navier-Stokes equations by value function approximation, tech. rep., University of Graz (2019). Preprint https://arxiv.org/abs/1902.00394. [Google Scholar]
  7. E. Casas and K. Kunisch, Stabilization by sparse controls for a class of semilinear parabolic equations. SIAM J. Control Optim. 55 (2017) 512–532. [Google Scholar]
  8. Y.T. Chow, W. Li, S. Osher and W. Yin, Algorithm for Hamilton-Jacobi equations in density space via a generalized Hopf formula (2018). [Google Scholar]
  9. E. Corominas and F. Sunyer Balaguer Conditions for an infinitely differentiable function to be a polynomial. Revista Mat. Hisp.-Amer. 14 (1954) 26–43. [Google Scholar]
  10. R. Curtain and H. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory. Springer-Verlag (2005). [Google Scholar]
  11. J. Diestel and J.J. Uhl, Jr., Vector measures. With a foreword by B. J. Pettis, Mathematical Surveys, No. 15. American Mathematical Society, Providence, R.I. (1977). [Google Scholar]
  12. S. Dolgov, D. Kalise and K. Kunisch, Tensor decomposition for high-dimensional Hamilton-Jacobi-Bellman equations. To appear in: Siam J. Sci. Comput. (2019). [Google Scholar]
  13. W.F. Donoghue, Jr., Distributions and Fourier transforms. Vol. 32 of Pure and Applied Mathematics. Academic Press, New York (1969). [Google Scholar]
  14. R.E. Edwards, Functional Analysis. Theory and Applications. Holt, Rinehart and Winston, New York (1965). [Google Scholar]
  15. M. Falcone and R. Ferretti, Semi-Lagrangian approximation schemes for linear and Hamilton-Jacobi equations. Society for Industrial and Applied Mathematics SIAM, Philadelphia, PA (2014). [Google Scholar]
  16. W.H. Fleming and H.M. Soner, Controlled Markov processes and viscosity solutions. Vol. 25 of Stochastic Modelling and Applied Probability. Springer, New York, second ed. (2006). [Google Scholar]
  17. J. Garcke and A. Kröner, Suboptimal feedback control of PDEs by solving HJB equations on adaptive sparse grids. J. Sci. Comput. 70 (2017) 1–28. [Google Scholar]
  18. S. Garreis and M. Ulbrich, Constrained optimization with low-rank tensors and applications to parametric problems with PDEs. SIAM J. Sci. Comput. 39 (2017) A25–A54. [Google Scholar]
  19. K. He, X. Zhang, S. Ren and J. Sun, Deep residual learning for image recognition. Preprint arXiv:1512.03385 (2015). [Google Scholar]
  20. K. Hornik, Multilayer feedforward networks are universal approximators. Neural Netw. 2 (1989) 359–366. [Google Scholar]
  21. D. Kalise and K. Kunisch, Polynomial approximation of high-dimensional Hamilton-Jacobi-Bellman equations and applications to feedback control of semilinear parabolic PDEs. SIAM J. Sci. Comput. 40 (2018) A629–A652. [Google Scholar]
  22. D. Kalise, K. Kunisch and Z. Rao, eds., Hamilton-Jacobi-Bellman equations. Vol. 21 of Radon Series on Computational and Applied Mathematics. De Gruyter, Berlin (2018). [Google Scholar]
  23. D.P. Kouri, M. Heinkenschloss, D. Ridzal and B.G. van Bloemen Waanders, A trust-region algorithm with adaptive stochastic collocation for PDE optimization under uncertainty. SIAM J. Sci. Comput. 35 (2013) A1847–A1879. [Google Scholar]
  24. M. Leshno, V.Y. Lin, A. Pinkus and S. Schocken, Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Networks 6 (1993) 861–867. [Google Scholar]
  25. V.Y. Lin and A. Pinkus, Fundamentality of ridge functions. J. Approx. Theory 75 (1993) 295–311. [Google Scholar]
  26. J. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications. Vol. I/II. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen. Springer-Verlag, Berlin (1972). [Google Scholar]
  27. P.L. Lions and J.-C. Rochet, Hopf formula and multitime Hamilton-Jacobi equations. Proc. Am. Math. Soc. 96 (1986) 79–84. [Google Scholar]
  28. T. Nakamura-Zimmerer, Q. Gong and W. Kang, Adaptive deep learning for high-dimensional Hamilton-Jacobi-bellman equations (2019). [Google Scholar]
  29. T. Osa, J. Pajarinen, G. Neumann, J.A. Bagnell, P. Abbeel and J. Peters, An algorithmic perspective on imitation learning. Found. Trends Robotics 7 (2018) 1–179. [Google Scholar]
  30. J. Peters and S. Schaal, Reinforcement learning of motor skills with policy gradients. Neural Networks 21 (2008) 682–697. [Google Scholar]
  31. A. Pinkus, Approximation theory of the MLP model. Neural Networks 8 (1999) 143–195. [Google Scholar]
  32. S.P. Ponomarëv, Submersions and pre-images of sets of measure zero. Sibirsk. Mat. Zh. 28 (1987) 199–210. [Google Scholar]
  33. B. Recht, A tour of reinforcement learning: The view from continuous control. Annu. Rev. Control Robotics Auton. Syst. 2 (2018) 253–279. [Google Scholar]
  34. H.L. Royden, Real analysis. The Macmillan Co., New York; Collier-Macmillan Ltd., London (1963). [Google Scholar]
  35. R.S. Sutton and A.G. Barto, Reinforcement learning: an introduction. Adaptive Computation and Machine Learning. MIT Press, Cambridge, MA, second ed. (2018). [Google Scholar]
  36. L. Thevenet, J.-M. Buchot and J.-P. Raymond, Nonlinear feedback stabilization of a two-dimensional Burgers equation. ESAIM: COCV 16 (2010) 929–955. [CrossRef] [EDP Sciences] [Google Scholar]
  37. F. Trèves, Topological vector spaces, distributions and kernels. Academic Press, New York-London (1967). [Google Scholar]
  38. K. Vamvoudakis, F. Lewis and S.S. Ge, Neural networks in feedback control systems. Mechanical Engineers’ Handbook: Instrumentation, Systems, Controls, and MEMS. Wiley (2015). [Google Scholar]
  39. A. van der Schaft, L2-gain and passivity techniques in nonlinear control. Vol. 218 of Lecture Notes in Control and Information Sciences. Springer-Verlag London, Ltd., London (1996). [Google Scholar]
  40. E. Weinan and B. Yu, The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems. Commun. Math. Stat. 6 (2018) 1–12. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.