Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Advances in Distributed Parameter Systems

Marcelo Cavalcanti, Valeria Domingos Cavalcanti, Carole Rosier and Lionel Rosier
Advances in Delays and Dynamics, Advances in Distributed Parameter Systems 14 69 (2022)
https://doi.org/10.1007/978-3-030-94766-8_4

A Revision of M. Asch Notion of Discrete Control

Benbrahim Abdelouahab, Rezzoug Imad and Necib Abdelhalim
WSEAS TRANSACTIONS ON APPLIED AND THEORETICAL MECHANICS 17 245 (2022)
https://doi.org/10.37394/232011.2022.17.29

Controllability of the linear elasticity as a first-order system using a stabilized space-time mixed formulation

Arthur Bottois and Nicolae Cîndea
Mathematical Control and Related Fields (2022)
https://doi.org/10.3934/mcrf.2022028

Non-homogeneous boundary value problems for some KdV-type equations on a finite interval: A numerical approach

Juan Carlos Muñoz Grajales
Communications in Nonlinear Science and Numerical Simulation 96 105669 (2021)
https://doi.org/10.1016/j.cnsns.2020.105669

A mixed formulation for the direct approximation of the control of minimal $$L^2$$ L 2 -norm for linear type wave equations

Nicolae Cîndea and Arnaud Münch
Calcolo 52 (3) 245 (2015)
https://doi.org/10.1007/s10092-014-0116-x

Numerical solution of an inverse initial boundary-value problem for the full time-dependent Maxwell's equations in the presence of imperfections of small volume

Christian Daveau, Diane Manuel Douady, Abdessatar Khelifi and Anton Sushchenko
Applicable Analysis 92 (5) 975 (2013)
https://doi.org/10.1080/00036811.2011.643782

Exact boundary controllability of the second-order Maxwell system: Theory and numerical simulation

M. Darbas, O. Goubet and S. Lohrengel
Computers & Mathematics with Applications 63 (7) 1212 (2012)
https://doi.org/10.1016/j.camwa.2011.12.046

Numerical solution of an inverse initial boundary value problem for the wave equation in the presence of conductivity imperfections of small volume

Mark Asch, Marion Darbas and Jean-Baptiste Duval
ESAIM: Control, Optimisation and Calculus of Variations 17 (4) 1016 (2011)
https://doi.org/10.1051/cocv/2010031

Transient Wave Imaging with Limited-View Data

Habib Ammari, Mark Asch, Lili Guadarrama Bustos, Vincent Jugnon and Hyeonbae Kang
SIAM Journal on Imaging Sciences 4 (4) 1097 (2011)
https://doi.org/10.1137/100786174

Optimal location of the support of the control for the 1-D wave equation: numerical investigations

Arnaud Münch
Computational Optimization and Applications 42 (3) 443 (2009)
https://doi.org/10.1007/s10589-007-9133-x

Exact Controllability of a Piezoelectric Body. Theory and Numerical Simulation

Bernadette Miara and Arnaud Münch
Applied Mathematics and Optimization 59 (3) 383 (2009)
https://doi.org/10.1007/s00245-008-9059-4

Convergence of a Semidiscrete Two-Grid Algorithm for the Controllability of the $1-d$ Wave Equation

Mihaela Negreanu
SIAM Journal on Numerical Analysis 46 (6) 3233 (2008)
https://doi.org/10.1137/06064915X

Computational methods for the fast boundary stabilization of flexible structures. Part 1: The case of beams

F. Bourquin, B. Branchet and M. Collet
Computer Methods in Applied Mechanics and Engineering 196 (4-6) 988 (2007)
https://doi.org/10.1016/j.cma.2006.08.003

Wavelet Filtering for Exact Controllability of the Wave Equation

M. Negreanu, A.‐M. Matache and C. Schwab
SIAM Journal on Scientific Computing 28 (5) 1851 (2006)
https://doi.org/10.1137/050622894

A uniformly controllable and implicit scheme for the 1-D wave equation

Arnaud Münch
ESAIM: Mathematical Modelling and Numerical Analysis 39 (2) 377 (2005)
https://doi.org/10.1051/m2an:2005012

Conjugate Gradient Algorithms and Finite Element Methods

Roland Glowinski and Serguei Lapin
Scientific Computation, Conjugate Gradient Algorithms and Finite Element Methods 223 (2004)
https://doi.org/10.1007/978-3-642-18560-1_15