The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
Kim Dang Phung
ESAIM: COCV, 5 (2000) 87-137
Published online: 2002-08-15
This article has been cited by the following article(s):
29 articles
Semi-uniform stabilization of anisotropic Maxwell's equations via boundary feedback on split boundary
Nathanael Skrepek and Marcus Waurick Journal of Differential Equations 394 345 (2024) https://doi.org/10.1016/j.jde.2024.03.021
Normal trace inequalities and decay of solutions to the nonlinear Maxwell system with absorbing boundary
Richard Nutt and Roland Schnaubelt Journal of Mathematical Analysis and Applications 532 (1) 127915 (2024) https://doi.org/10.1016/j.jmaa.2023.127915
Willy Dörfler, Marlis Hochbruck, Jonas Köhler, Andreas Rieder, Roland Schnaubelt and Christian Wieners 49 133 (2023) https://doi.org/10.1007/978-3-031-05793-9_7
Stability properties for a problem of light scattering in a dispersive metallic domain
Serge Nicaise and Claire Scheid Evolution Equations and Control Theory 12 (1) 20 (2023) https://doi.org/10.3934/eect.2022020
A uniformly exponentially stable ADI scheme for Maxwell equations
Konstantin Zerulla Journal of Mathematical Analysis and Applications 492 (1) 124442 (2020) https://doi.org/10.1016/j.jmaa.2020.124442
Boundary stabilization of quasilinear Maxwell equations
Michael Pokojovy and Roland Schnaubelt Journal of Differential Equations 268 (2) 784 (2020) https://doi.org/10.1016/j.jde.2019.08.032
Exponential decay of quasilinear Maxwell equations with interior conductivity
Irena Lasiecka, Michael Pokojovy and Roland Schnaubelt Nonlinear Differential Equations and Applications NoDEA 26 (6) (2019) https://doi.org/10.1007/s00030-019-0595-1
Mathematical Foundations of Computational Electromagnetism
Franck Assous, Patrick Ciarlet and Simon Labrunie Applied Mathematical Sciences, Mathematical Foundations of Computational Electromagnetism 198 191 (2018) https://doi.org/10.1007/978-3-319-70842-3_5
Contrôlabilité de quelques équations cinétiques collisionnelles et non collisionnelles : Fokker-Planck et Vlasov-Navier-Stokes
Iván Moyano Séminaire Laurent Schwartz — EDP et applications 1 (2017) https://doi.org/10.5802/slsedp.107
SemiGlobal Exact Controllability of Nonlinear Plates
Matthias Eller and Daniel Toundykov SIAM Journal on Control and Optimization 53 (4) 2480 (2015) https://doi.org/10.1137/130939705
Orthogonal decomposition and asymptotic behavior for nonlinear Maxwell's equations
Marcio V. Ferreira and Celene Buriol Journal of Mathematical Analysis and Applications 426 (1) 392 (2015) https://doi.org/10.1016/j.jmaa.2014.12.071
On the controllability of the relativistic Vlasov–Maxwell system
Olivier Glass and Daniel Han-Kwan Journal de Mathématiques Pures et Appliquées 103 (3) 695 (2015) https://doi.org/10.1016/j.matpur.2014.07.007
Energy decay for Maxwell's equations with Ohm's law in partially cubic domains
Kim Dang Phung Communications on Pure and Applied Analysis 12 (5) 2229 (2013) https://doi.org/10.3934/cpaa.2013.12.2229
Maxwell's Equations as a Scattering Passive Linear System
George Weiss and Olof J. Staffans SIAM Journal on Control and Optimization 51 (5) 3722 (2013) https://doi.org/10.1137/120869444
Some controllability results for the relativistic Vlasov-Maxwell system
Daniel Han-Kwan Journées équations aux dérivées partielles 1 (2013) https://doi.org/10.5802/jedp.88
Exact boundary controllability of the second-order Maxwell system: Theory and numerical simulation
M. Darbas, O. Goubet and S. Lohrengel Computers & Mathematics with Applications 63 (7) 1212 (2012) https://doi.org/10.1016/j.camwa.2011.12.046
A Physically Motivated Class of Scattering Passive Linear Systems
Olof J. Staffans and George Weiss SIAM Journal on Control and Optimization 50 (5) 3083 (2012) https://doi.org/10.1137/110846403
Controlling the motion of charged particles in a vacuum electromagnetic field from the boundary
Luis R. Suazo and Weijiu Liu Automatica 45 (4) 1012 (2009) https://doi.org/10.1016/j.automatica.2008.11.011
Boundary observability of a numerical approximation scheme of Maxwell’s system in a cube
Serge Nicaise Collectanea mathematica 59 (1) 27 (2008) https://doi.org/10.1007/BF03191180
Functional Analysis and Evolution Equations
Serge Nicaise and Cristina Pignotti Functional Analysis and Evolution Equations 515 (2007) https://doi.org/10.1007/978-3-7643-7794-6_31
Boundary controllability of Maxwell's equations with nonzero conductivity inside a cube, I: Spectral controllability
S.S. Krigman and C.E. Wayne Journal of Mathematical Analysis and Applications 329 (2) 1375 (2007) https://doi.org/10.1016/j.jmaa.2006.06.101
Well-posedness and exponential stability of Maxwell-like systems coupled with strongly absorbing layers
Hélène Barucq and Mathieu Fontes Journal de Mathématiques Pures et Appliquées 87 (3) 253 (2007) https://doi.org/10.1016/j.matpur.2007.01.001
Stabilisation interne d'ondes électromagnétiques dans un domaine extérieur
Ammar Moulahi Journal de Mathématiques Pures et Appliquées 88 (5) 431 (2007) https://doi.org/10.1016/j.matpur.2007.09.006
Identification of small amplitude perturbations in the electromagnetic parameters from partial dynamic boundary measurements
Habib Ammari Journal of Mathematical Analysis and Applications 282 (2) 479 (2003) https://doi.org/10.1016/S0022-247X(02)00709-6
Boundary stabilization of Maxwell's equations with space-time variable coefficients
Serge Nicaise and Cristina Pignotti ESAIM: Control, Optimisation and Calculus of Variations 9 563 (2003) https://doi.org/10.1051/cocv:2003027
A new family of first-order boundary conditions for the Maxwell system: derivation, well-posedness and long-time behavior
Hélène Barucq Journal de Mathématiques Pures et Appliquées 82 (1) 67 (2003) https://doi.org/10.1016/S0021-7824(02)00002-8
Time Domain Decomposition in Final Value Optimal Control of the Maxwell System
John E. Lagnese and G. Leugering ESAIM: Control, Optimisation and Calculus of Variations 8 775 (2002) https://doi.org/10.1051/cocv:2002042
A Singular Perturbation Problem in Exact Controllability of the Maxwell System
John E. Lagnese ESAIM: Control, Optimisation and Calculus of Variations 6 275 (2001) https://doi.org/10.1051/cocv:2001111
Exact Boundary Controllability of Maxwell's Equations in Heterogeneous Media and an Application to an Inverse Source Problem
Serge Nicaise SIAM Journal on Control and Optimization 38 (4) 1145 (2000) https://doi.org/10.1137/S0363012998344373