Free Access
Issue
ESAIM: COCV
Volume 5, 2000
Page(s) 87 - 137
DOI https://doi.org/10.1051/cocv:2000103
Published online 15 August 2002
  1. H. Barucq, Étude asymptotique du système de Maxwell avec conditions aux limites absorbantes. Thèse de l'université de Bordeaux I (1993). g [Google Scholar]
  2. N. Burq, Mesures semi-classiques et mesures de défaut, Séminaire Bourbaki. Asterisque 245 (1997) 167-195. g [Google Scholar]
  3. H. Barucq et B. Hanouzet, Étude asymptotique du système de Maxwell avec la condition aux limites absorbante de Silver-Müller II. C. R. Acad. Sci. Paris Sér. I Math. 316 (1993) 1019-1024. g [Google Scholar]
  4. C. Bardos, L. Halpern, G. Lebeau, J. Rauch et E. Zuazua, Stabilisation de l'équation des ondes au moyen d'un feedback portant sur la condition aux limites de Dirichlet. Asymptot. Anal. 4 (1991) 285-291. g [Google Scholar]
  5. C. Bardos, G. Lebeau et J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary. SIAM J. Control Optim. 30 (1992) 1024-1065. g [CrossRef] [MathSciNet] [Google Scholar]
  6. M. Cessenat, Mathematical method in electromagnetism - linear theorie and applications. Ser. Adv. Math. Appl. Sci. 41 (1996). g [Google Scholar]
  7. R. Dautray et J.-L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques. Masson (1988). g [Google Scholar]
  8. V. Komornik, Boundary stabilization, observation and control of Maxwell's equations. Panamer. Math. J. 4 (1994) 47-61. g [MathSciNet] [Google Scholar]
  9. J. Lagnese, Exact boundary controllability of Maxwell's equations in a general region. SIAM J. Control Optim. 27 (1989) 374-388. g [CrossRef] [MathSciNet] [Google Scholar]
  10. G. Lebeau, Contrôle et stabilisation hyperboliques. Séminaire E.D.P. École Polytechnique (1990). g [Google Scholar]
  11. J.-L. Lions, Contrôlabilité exacte, stabilisation et perturbation des systèmes distribués. RMA, Masson, Paris (1988). g [Google Scholar]
  12. J.-L. Lions et E. Magenes, Problèmes aux limites non homogènes. Dunod (1968). g [Google Scholar]
  13. G. Lebeau et L. Robbiano, Stabilisation de l'équation des ondes par le bord. Duke Math. J. 86 (1997) 465-491. g [CrossRef] [MathSciNet] [Google Scholar]
  14. R. Melrose et J. Sjöstrand, Singularities of boundary value problems I. Comm. Pure Appl. Math. 31 (1978) 593-617. g [CrossRef] [MathSciNet] [Google Scholar]
  15. R. Melrose et J. Sjöstrand, Singularities of boundary value problems II. Comm. Pure Appl. Math. 35 (1982) 129-168. g [CrossRef] [MathSciNet] [Google Scholar]
  16. O. Nalin, Contrôlabilité exacte sur une partie du bord des équations de Maxwell. C. R. Acad. Sci. Paris Sér. I Math. 309 (1989) 811-815. g [Google Scholar]
  17. A. Pazy, Semigroups of linear operators and applications to partial differential equations. Springer-Verlag, New York (1983). g [Google Scholar]
  18. K.-D. Phung, Stabilisation frontière du système de Maxwell avec la condition aux limites absorbante de Silver-Müller. C. R. Acad. Sci. Paris Sér. I Math. 3233 (1995) 187-192. g [Google Scholar]
  19. K.-D. Phung, Controlabilité exacte et stabilisation interne des équations de Maxwell. C. R. Acad. Sci. Paris Sér. I Math. 3233 (1996) 169-174. g [Google Scholar]
  20. J.V. Ralston, Solutions of Wave equation with localized energy. Comm. Pure. Appl. Math. 22 (1969) 807-823. g [CrossRef] [MathSciNet] [Google Scholar]
  21. J. Rauch et M. Taylor, Penetration into shadow region and unique continuation properties in hyperbolic mixed problems. Indiana Univ. Mathematics J. 22 (1972) 277-284. g [CrossRef] [Google Scholar]
  22. M. Taylor, Pseudodifferential operators, Princeton Univ. Press, Princeton, N.J. (1981). g [Google Scholar]
  23. M. Taylor, Reflection of singularities of solutions to systems of differential equations. Comm. Pure Appl. Math. 28 (1975) 457-478. g [CrossRef] [MathSciNet] [Google Scholar]
  24. M. Taylor, Grazing rays and reflection of singularities of solutions to wave equations II. Comm. Pure Appl. Math. 29 (1976) 463-481. g [CrossRef] [MathSciNet] [Google Scholar]
  25. N. Weck, Exact boundary controllability for a Maxwell problem, submitted to SIAM J. Control. Optim. g [Google Scholar]
  26. N. Weck et K.J. Witsch, Low frequency asymptotics for dissipative Maxwell's equations in bounded domains. Math. Methods Appl. Sci. 13 (1990) 81-93. g [CrossRef] [MathSciNet] [Google Scholar]
  27. K. Yamamoto, Singularities of solutions to the boundary value problem for elastic and Maxwell's equations. Japan J. Math. (N.S.) 14 (1988) 119-163. [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.