Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Bounded vorticity for the 3D Ginzburg–Landau model and an isoflux problem

Carlos Román, Etienne Sandier and Sylvia Serfaty
Proceedings of the London Mathematical Society 126 (3) 1015 (2023)
https://doi.org/10.1112/plms.12505

Description of the ground state for a model of two-component rotating Bose–Einstein condensates.

Etienne Sandier
Journées équations aux dérivées partielles 1 (2019)
https://doi.org/10.5802/jedp.669

Multi-vortex crystal lattices in Bose–Einstein condensates with a rotating trap

Shuangquan Xie, Panayotis G. Kevrekidis and Theodore Kolokolnikov
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474 (2213) 20170553 (2018)
https://doi.org/10.1098/rspa.2017.0553

The Ground State of a Gross–Pitaevskii Energy with General Potential in the Thomas–Fermi Limit

Georgia Karali and Christos Sourdis
Archive for Rational Mechanics and Analysis 217 (2) 439 (2015)
https://doi.org/10.1007/s00205-015-0844-3

Existence and orbital stability of the ground states with prescribed mass for theL2-critical and supercritical NLS on bounded domains

Benedetta Noris, Hugo Tavares and Gianmaria Verzini
Analysis & PDE 7 (8) 1807 (2014)
https://doi.org/10.2140/apde.2014.7.1807

Well-posedness for a mean field model of Ginzburg–Landau vortices with opposite degrees

Edoardo Mainini
Nonlinear Differential Equations and Applications NoDEA 19 (2) 133 (2012)
https://doi.org/10.1007/s00030-011-0121-6

Asymptotic behavior of critical points for a Gross–Pitaevskii energy

Ling Zhou, Haifeng Xu and Zuhan Liu
Nonlinear Analysis: Theory, Methods & Applications 74 (12) 4274 (2011)
https://doi.org/10.1016/j.na.2011.04.010

Γ-Convergence of 2D Ginzburg-Landau functionals with vortex concentration along curves

Sam Alama, Lia Bronsard and Vincent Millot
Journal d'Analyse Mathématique 114 (1) 341 (2011)
https://doi.org/10.1007/s11854-011-0020-0

The Transition to a Giant Vortex Phase in a Fast Rotating Bose-Einstein Condensate

M. Correggi, N. Rougerie and J. Yngvason
Communications in Mathematical Physics 303 (2) 451 (2011)
https://doi.org/10.1007/s00220-011-1202-4

Critical Rotational Speeds in the Gross-Pitaevskii Theory on a Disc with Dirichlet Boundary Conditions

M. Correggi, F. Pinsker, N. Rougerie and J. Yngvason
Journal of Statistical Physics 143 (2) 261 (2011)
https://doi.org/10.1007/s10955-011-0182-2

Vortices in rotating Bose–Einstein condensates confined in homogeneous traps

T. Rindler-Daller
Physica A: Statistical Mechanics and its Applications 387 (8-9) 1851 (2008)
https://doi.org/10.1016/j.physa.2007.11.017

Rapidly rotating Bose-Einstein condensates in strongly anharmonic traps

M. Correggi, T. Rindler-Daller and J. Yngvason
Journal of Mathematical Physics 48 (4) (2007)
https://doi.org/10.1063/1.2712421

ENERGY EXPANSION AND VORTEX LOCATION FOR A TWO-DIMENSIONAL ROTATING BOSE–EINSTEIN CONDENSATE

RADU IGNAT and VINCENT MILLOT
Reviews in Mathematical Physics 18 (02) 119 (2006)
https://doi.org/10.1142/S0129055X06002607

The critical velocity for vortex existence in a two-dimensional rotating Bose–Einstein condensate

Radu Ignat and Vincent Millot
Journal of Functional Analysis 233 (1) 260 (2006)
https://doi.org/10.1016/j.jfa.2005.06.020

Vortices and pinning effects for the Ginzburg-Landau model in multiply connected domains

Stan Alama and Lia Bronsard
Communications on Pure and Applied Mathematics 59 (1) 36 (2006)
https://doi.org/10.1002/cpa.20086

Giant Vortex and the Breakdown of Strong Pinning in a Rotating Bose-Einstein Condensate

Amandine Aftalion, Stan Alama and Lia Bronsard
Archive for Rational Mechanics and Analysis 178 (2) 247 (2005)
https://doi.org/10.1007/s00205-005-0373-6

Pinning effects and their breakdown for a Ginzburg–Landau model with normal inclusions

Stan Alama and Lia Bronsard
Journal of Mathematical Physics 46 (9) 095102 (2005)
https://doi.org/10.1063/1.2010354

Vortices in a rotating Bose-Einstein condensate: Critical angular velocities and energy diagrams in the Thomas-Fermi regime

Amandine Aftalion and Qiang Du
Physical Review A 64 (6) (2001)
https://doi.org/10.1103/PhysRevA.64.063603