The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
Sylvia Serfaty
ESAIM: COCV, 6 (2001) 201-238
Published online: 2002-08-15
This article has been cited by the following article(s):
21 articles
Bounded vorticity for the 3D Ginzburg–Landau model and an isoflux problem
Carlos Román, Etienne Sandier and Sylvia Serfaty Proceedings of the London Mathematical Society 126 (3) 1015 (2023) https://doi.org/10.1112/plms.12505
Description of the ground state for a model of two-component rotating Bose–Einstein condensates.
Etienne Sandier Journées équations aux dérivées partielles 1 (2019) https://doi.org/10.5802/jedp.669
Multi-vortex crystal lattices in Bose–Einstein condensates with a rotating trap
Shuangquan Xie, Panayotis G. Kevrekidis and Theodore Kolokolnikov Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474 (2213) 20170553 (2018) https://doi.org/10.1098/rspa.2017.0553
The Ground State of a Gross–Pitaevskii Energy with General Potential in the Thomas–Fermi Limit
Georgia Karali and Christos Sourdis Archive for Rational Mechanics and Analysis 217 (2) 439 (2015) https://doi.org/10.1007/s00205-015-0844-3
Existence and orbital stability of the ground states with prescribed mass for theL2-critical and supercritical NLS on bounded domains
Benedetta Noris, Hugo Tavares and Gianmaria Verzini Analysis & PDE 7 (8) 1807 (2014) https://doi.org/10.2140/apde.2014.7.1807
Inhomogeneous Vortex Patterns in Rotating Bose-Einstein Condensates
M. Correggi and N. Rougerie Communications in Mathematical Physics 321 (3) 817 (2013) https://doi.org/10.1007/s00220-013-1697-y
Well-posedness for a mean field model of Ginzburg–Landau vortices with opposite degrees
Edoardo Mainini Nonlinear Differential Equations and Applications NoDEA 19 (2) 133 (2012) https://doi.org/10.1007/s00030-011-0121-6
Asymptotic behavior of critical points for a Gross–Pitaevskii energy
Ling Zhou, Haifeng Xu and Zuhan Liu Nonlinear Analysis: Theory, Methods & Applications 74 (12) 4274 (2011) https://doi.org/10.1016/j.na.2011.04.010
Γ-Convergence of 2D Ginzburg-Landau functionals with vortex concentration along curves
Sam Alama, Lia Bronsard and Vincent Millot Journal d'Analyse Mathématique 114 (1) 341 (2011) https://doi.org/10.1007/s11854-011-0020-0
The Transition to a Giant Vortex Phase in a Fast Rotating Bose-Einstein Condensate
M. Correggi, N. Rougerie and J. Yngvason Communications in Mathematical Physics 303 (2) 451 (2011) https://doi.org/10.1007/s00220-011-1202-4
Critical Rotational Speeds in the Gross-Pitaevskii Theory on a Disc with Dirichlet Boundary Conditions
M. Correggi, F. Pinsker, N. Rougerie and J. Yngvason Journal of Statistical Physics 143 (2) 261 (2011) https://doi.org/10.1007/s10955-011-0182-2
Hodge decomposition with degenerate weights and the Gross–Pitaevskii energy
José Alberto Montero Journal of Functional Analysis 254 (7) 1926 (2008) https://doi.org/10.1016/j.jfa.2007.10.016
Vortices in rotating Bose–Einstein condensates confined in homogeneous traps
T. Rindler-Daller Physica A: Statistical Mechanics and its Applications 387 (8-9) 1851 (2008) https://doi.org/10.1016/j.physa.2007.11.017
Rapidly rotating Bose-Einstein condensates in strongly anharmonic traps
M. Correggi, T. Rindler-Daller and J. Yngvason Journal of Mathematical Physics 48 (4) (2007) https://doi.org/10.1063/1.2712421
ENERGY EXPANSION AND VORTEX LOCATION FOR A TWO-DIMENSIONAL ROTATING BOSE–EINSTEIN CONDENSATE
RADU IGNAT and VINCENT MILLOT Reviews in Mathematical Physics 18 (02) 119 (2006) https://doi.org/10.1142/S0129055X06002607
The critical velocity for vortex existence in a two-dimensional rotating Bose–Einstein condensate
Radu Ignat and Vincent Millot Journal of Functional Analysis 233 (1) 260 (2006) https://doi.org/10.1016/j.jfa.2005.06.020
Vortices and pinning effects for the Ginzburg-Landau model in multiply connected domains
Stan Alama and Lia Bronsard Communications on Pure and Applied Mathematics 59 (1) 36 (2006) https://doi.org/10.1002/cpa.20086
Vortices in a 2d rotating Bose–Einstein condensate
Radu Ignat and Vincent Millot Comptes Rendus Mathematique 340 (8) 571 (2005) https://doi.org/10.1016/j.crma.2005.03.015
Giant Vortex and the Breakdown of Strong Pinning in a Rotating Bose-Einstein Condensate
Amandine Aftalion, Stan Alama and Lia Bronsard Archive for Rational Mechanics and Analysis 178 (2) 247 (2005) https://doi.org/10.1007/s00205-005-0373-6
Pinning effects and their breakdown for a Ginzburg–Landau model with normal inclusions
Stan Alama and Lia Bronsard Journal of Mathematical Physics 46 (9) 095102 (2005) https://doi.org/10.1063/1.2010354
Vortices in a rotating Bose-Einstein condensate: Critical angular velocities and energy diagrams in the Thomas-Fermi regime
Amandine Aftalion and Qiang Du Physical Review A 64 (6) (2001) https://doi.org/10.1103/PhysRevA.64.063603