Free Access
Volume 6, 2001
Page(s) 201 - 238
Published online 15 August 2002
  1. L. Almeida and F. Bethuel, Topological Methods for the Ginzburg-Landau Equations. J. Math. Pures Appl. 77 (1998) 1-49. [CrossRef] [MathSciNet] [Google Scholar]
  2. A. Aftalion (in preparation.) [Google Scholar]
  3. A. Aftalion, E. Sandier and S. Serfaty, Pinning Phenomena in the Ginzburg-Landau Model of Superconductivity. J. Math. Pures Appl. (to appear). [Google Scholar]
  4. N. André and I. Shafrir, Minimization of a Ginzburg-Landau type functional with nonvanishing Dirichlet boundary condition. Calc. Var. Partial Differential Equations (1998) 1-27. [Google Scholar]
  5. F. Bethuel, H. Brezis and F. Hélein, Ginzburg-Landau Vortices. Birkhäuser (1994). [Google Scholar]
  6. A. Bonnet and R. Monneau, Distribution of vortices in a type-II superconductor as a free boundary problem: Existence and regularity via Nash-Moser theory. Interfaces Free Bound. 2 (2000) 181-200. [CrossRef] [MathSciNet] [Google Scholar]
  7. H. Brezis and L. Oswald, Remarks on sublinear elliptic equations. Nonlinear Anal. 10 (1986) 55-64. [CrossRef] [MathSciNet] [Google Scholar]
  8. D.A. Butts and D.S. Rokhsar, Predicted signatures of rotating Bose-Einstein condensates. Nature 397 (1999) 327-329. [CrossRef] [Google Scholar]
  9. Y. Castin and R. Dum, Bose-Einstein condensates with vortices in rotating traps. Eur. Phys. J. D 7 (1999) 399-412. [CrossRef] [EDP Sciences] [Google Scholar]
  10. A. Fetter, Vortices and Ions in Helium, in The physics of liquid and solid helium, part I, edited by K.H. Bennemann and J.B. Keterson. John Wiley, Interscience, Interscience Monographs and Texts in Physics and Astronomy 30 (1976). [Google Scholar]
  11. S. Gueron and I. Shafrir, On a Discrete Variational Problem Involving Interacting Particles. SIAM J. Appl. Math. 60 (2000) 1-17. [CrossRef] [MathSciNet] [Google Scholar]
  12. D. Kinderlehrer and G. Stampacchia, An introduction to variational inequalities and their applications. Acad. Press (1980). [Google Scholar]
  13. L. Lassoued and P. Mironescu, Ginzburg-Landau type energy with discontinuous constraint. J. Anal. Math. 77 (1999) 1-26. [CrossRef] [MathSciNet] [Google Scholar]
  14. N. Owen, J. Rubinstein and P. Sternberg, Minimizers and gradient flows for singularly perturbed bi-stable potentials with a Dirichlet condition. Proc. Roy. Soc. London Ser. A 429 (1990) 503-532. [Google Scholar]
  15. J.F. Rodrigues, Obstacle Problems in Mathematical Physics. Mathematical Studies, North Holland (1987). [Google Scholar]
  16. S. Serfaty, Local Minimizers for the Ginzburg-Landau Energy near Critical Magnetic Field, Part I. Comm. Contemporary Math. 1 (1999) 213-254. [CrossRef] [MathSciNet] [Google Scholar]
  17. S. Serfaty, Local Minimizers for the Ginzburg-Landau Energy near Critical Magnetic Field, Part II. Comm. Contemporary Math. 1 (1999) 295-333. [CrossRef] [MathSciNet] [Google Scholar]
  18. S. Serfaty, Stable Configurations in Superconductivity: Uniqueness, Multiplicity and Vortex-Nucleation. Arch. Rational Mech. Anal. 149 (1999) 329-365. [CrossRef] [Google Scholar]
  19. S. Serfaty, Sur l'équation de Ginzburg-Landau avec champ magnétique, in Proc. of Journées Équations aux dérivées partielles, Saint-Jean-de-Monts (1998). [Google Scholar]
  20. E. Sandier and S. Serfaty, Global Minimizers for the Ginzburg-Landau Functional below the First Critical Magnetic Field. Ann. Inst. H. Poincaré Anal. Non Linéaire 17 (2000) 119-145. [CrossRef] [MathSciNet] [Google Scholar]
  21. E. Sandier and S. Serfaty, On the Energy of Type-II Superconductors in the Mixed Phase. Rev. Math. Phys. (to appear). [Google Scholar]
  22. E. Sandier and S. Serfaty, A Rigorous Derivation of a Free-Boundary Problem Arising in Superconductivity. Annales Sci. École Norm. Sup. (4) 33 (2000) 561-592. [Google Scholar]
  23. E. Sandier and S. Serfaty, Ginzburg-Landau Minimizers Near the First Critical Field Have Bounded Vorticity. Preprint. [Google Scholar]
  24. D. Tilley and J. Tilley, Superfluidity and Superconductivity, 2nd edition. Adam Hilger Ltd., Bristol (1986). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.