Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

This article has been cited by the following article(s):

Trends in Partial Differential Equations of Mathematical Physics

Lorenzo Brandolese
Progress in Nonlinear Differential Equations and Their Applications, Trends in Partial Differential Equations of Mathematical Physics 61 27 (2005)
DOI: 10.1007/3-7643-7317-2_3
See this article

Handbook of Mathematical Analysis in Mechanics of Viscous Fluids

Lorenzo Brandolese and Maria E. Schonbek
Handbook of Mathematical Analysis in Mechanics of Viscous Fluids 579 (2018)
DOI: 10.1007/978-3-319-13344-7_11
See this article

The Navier-Stokes Problem in the 21st Century

The Navier-Stokes Problem in the 21st Century 677 (2016)
DOI: 10.1201/b19556-23
See this article

Asymptotic expansion for solutions of the Navier–Stokes equations with potential forces

Igor Kukavica and Ednei Reis
Journal of Differential Equations 250 (1) 607 (2011)
DOI: 10.1016/j.jde.2010.08.016
See this article

New asymptotic profiles of nonstationary solutions of the Navier–Stokes system

Lorenzo Brandolese and François Vigneron
Journal de Mathématiques Pures et Appliquées 88 (1) 64 (2007)
DOI: 10.1016/j.matpur.2007.04.007
See this article

On the Characterization of the Navier–Stokes Flows with the Power-Like Energy Decay

Zdeněk Skalák
Journal of Mathematical Fluid Mechanics 16 (3) 431 (2014)
DOI: 10.1007/s00021-014-0164-7
See this article

Application of the Realization of Homogeneous Sobolev Spaces to Navier--Stokes

Lorenzo Brandolese
SIAM Journal on Mathematical Analysis 37 (2) 673 (2005)
DOI: 10.1137/S0036141004444408
See this article

Conditions on the Pressure for Vanishing Velocity in the Incompressible Fluid Flows in ℝN

Dongho Chae
Communications in Partial Differential Equations 37 (8) 1445 (2012)
DOI: 10.1080/03605302.2011.633956
See this article

Remarks on a Liouville-Type Theorem for Beltrami Flows

Dongho Chae and Peter Constantin
International Mathematics Research Notices 2015 (20) 10012 (2015)
DOI: 10.1093/imrn/rnu233
See this article

Handbook of Mathematical Analysis in Mechanics of Viscous Fluids

Lorenzo Brandolese and Maria E. Schonbek
Handbook of Mathematical Analysis in Mechanics of Viscous Fluids 1 (2016)
DOI: 10.1007/978-3-319-10151-4_11-1
See this article

Spatial decay of the velocity field of an incompressible viscous fluid in

François Vigneron
Nonlinear Analysis: Theory, Methods & Applications 63 (4) 525 (2005)
DOI: 10.1016/j.na.2005.05.016
See this article

On large-time energy concentration in solutions to the Navier-Stokes equations in the whole 3D space

Z. Skalák
ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 92 (10) 801 (2012)
DOI: 10.1002/zamm.201000241
See this article

Notes on the space–time decay rate of the Stokes flows in the half space

Tongkeun Chang and Bum Ja Jin
Journal of Differential Equations 263 (1) 240 (2017)
DOI: 10.1016/j.jde.2017.02.034
See this article

On the weighted decay for solutions of the Navier–Stokes system

Igor Kukavica
Nonlinear Analysis: Theory, Methods & Applications 70 (6) 2466 (2009)
DOI: 10.1016/j.na.2008.03.031
See this article

Handbook of Mathematical Fluid Dynamics

Marco Cannone
Handbook of Mathematical Fluid Dynamics 3 161 (2005)
DOI: 10.1016/S1874-5792(05)80006-0
See this article

Spatial asymptotic expansions in the incompressible Euler equation

Robert McOwen and Petar Topalov
Geometric and Functional Analysis 27 (3) 637 (2017)
DOI: 10.1007/s00039-017-0410-2
See this article

Pointwise decay estimate of Navier–Stokes flows in the half space with slowly decreasing initial value

Tongkeun Chang and Bum Ja Jin
Nonlinear Analysis 157 167 (2017)
DOI: 10.1016/j.na.2017.03.012
See this article

On the asymptotic behavior of solutions of the 2d Euler equation

Saif Sultan and Peter Topalov
Journal of Differential Equations 269 (6) 5280 (2020)
DOI: 10.1016/j.jde.2020.04.002
See this article