Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Spatial Asymptotic Expansions in the Navier–Stokes Equation

Robert McOwen and Peter Topalov
International Mathematics Research Notices 2024 (4) 3391 (2024)
https://doi.org/10.1093/imrn/rnad186

Handbook of Mathematical Analysis in Mechanics of Viscous Fluids

Lorenzo Brandolese and Maria E. Schonbek
Handbook of Mathematical Analysis in Mechanics of Viscous Fluids 579 (2018)
https://doi.org/10.1007/978-3-319-13344-7_11

Pointwise decay estimate of Navier–Stokes flows in the half space with slowly decreasing initial value

Tongkeun Chang and Bum Ja Jin
Nonlinear Analysis 157 167 (2017)
https://doi.org/10.1016/j.na.2017.03.012

Remarks on a Liouville-Type Theorem for Beltrami Flows

Dongho Chae and Peter Constantin
International Mathematics Research Notices 2015 (20) 10012 (2015)
https://doi.org/10.1093/imrn/rnu233

On large‐time energy concentration in solutions to the Navier‐Stokes equations in the whole 3D space

Z. Skalák
ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 92 (10) 801 (2012)
https://doi.org/10.1002/zamm.201000241

Asymptotic expansion for solutions of the Navier–Stokes equations with potential forces

Igor Kukavica and Ednei Reis
Journal of Differential Equations 250 (1) 607 (2011)
https://doi.org/10.1016/j.jde.2010.08.016

New asymptotic profiles of nonstationary solutions of the Navier–Stokes system

Lorenzo Brandolese and François Vigneron
Journal de Mathématiques Pures et Appliquées 88 (1) 64 (2007)
https://doi.org/10.1016/j.matpur.2007.04.007

Trends in Partial Differential Equations of Mathematical Physics

Lorenzo Brandolese
Progress in Nonlinear Differential Equations and Their Applications, Trends in Partial Differential Equations of Mathematical Physics 61 27 (2005)
https://doi.org/10.1007/3-7643-7317-2_3

Spatial decay of the velocity field of an incompressible viscous fluid in

François Vigneron
Nonlinear Analysis: Theory, Methods & Applications 63 (4) 525 (2005)
https://doi.org/10.1016/j.na.2005.05.016