Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Stabilization results for delayed fifth-order KdV-type equation in a bounded domain

Roberto de A. Capistrano-Filho and Victor Hugo Gonzalez Martinez
Mathematical Control and Related Fields (2023)
https://doi.org/10.3934/mcrf.2023004

On a multi-objective control problem for the Korteweg–de Vries equation

Islanita C. A. Albuquerque, Fágner D. Araruna and Maurício C. Santos
Calculus of Variations and Partial Differential Equations 62 (4) (2023)
https://doi.org/10.1007/s00526-023-02471-0

Exponential stabilization of a linear Korteweg-de Vries equation with input saturation

Ahmat Mahamat Taboye and Mohamed Laabissi
Evolution Equations and Control Theory 11 (5) 1519 (2022)
https://doi.org/10.3934/eect.2021052

Delayed stabilization of the Korteweg–de Vries equation on a star-shaped network

Hugo Parada, Emmanuelle Crépeau and Christophe Prieur
Mathematics of Control, Signals, and Systems 34 (3) 559 (2022)
https://doi.org/10.1007/s00498-022-00319-0

On the asymptotic stability of the Korteweg-de Vries equation with time-delayed internal feedback

Julie Valein
Mathematical Control and Related Fields 12 (3) 667 (2022)
https://doi.org/10.3934/mcrf.2021039

Exponential decay for the KdV equation on ℝ with new localized dampings

Ming Wang and Deqin Zhou
Proceedings of the Royal Society of Edinburgh: Section A Mathematics 1 (2022)
https://doi.org/10.1017/prm.2022.17

Well‐posedness and exponential stability of the Kawahara equation with a time‐delayed localized damping

Boumediène Chentouf
Mathematical Methods in the Applied Sciences 45 (16) 10312 (2022)
https://doi.org/10.1002/mma.8369

Global Well-Posedness of the KdV Equation on a Star-Shaped Network and Stabilization by Saturated Controllers

Hugo Parada, Emmanuelle Crépeau and Christophe Prieur
SIAM Journal on Control and Optimization 60 (4) 2268 (2022)
https://doi.org/10.1137/21M1434581

Well-posedness and asymptotic behavior of a generalized higher order nonlinear Schrödinger equation with localized dissipation

Marcelo M. Cavalcanti, Wellington J. Corrêa, Andrei V. Faminskii, Mauricio A. Sepúlveda C. and Rodrigo Véjar-Asem
Computers & Mathematics with Applications 96 188 (2021)
https://doi.org/10.1016/j.camwa.2021.05.001

Qualitative Analysis of the Dynamic for the Nonlinear Korteweg–de Vries Equation with a Boundary Memory

Boumediène Chentouf
Qualitative Theory of Dynamical Systems 20 (2) (2021)
https://doi.org/10.1007/s12346-021-00472-y

Well-posedness and exponential decay estimates for a Korteweg–de Vries–Burgers equation with time-delay

Vilmos Komornik and Cristina Pignotti
Nonlinear Analysis 191 111646 (2020)
https://doi.org/10.1016/j.na.2019.111646

Pseudo-Backstepping and Its Application to the Control of Korteweg--de Vries Equation from the Right Endpoint on a Finite Domain

Türker Özsarı and Ahmet Batal
SIAM Journal on Control and Optimization 57 (2) 1255 (2019)
https://doi.org/10.1137/18M1211933

Two Approaches for the Stabilization of Nonlinear KdV Equation With Boundary Time-Delay Feedback

Lucie Baudouin, Emmanuelle Crepeau and Julie Valein
IEEE Transactions on Automatic Control 64 (4) 1403 (2019)
https://doi.org/10.1109/TAC.2018.2849564

Exponential Stability for the Generalized Korteweg-de Vries Equation in a Finite Interval with Weak Damping

Mo Chen
Indian Journal of Pure and Applied Mathematics 49 (4) 717 (2018)
https://doi.org/10.1007/s13226-018-0297-0

Feedback Stabilization and Boundary Controllability of the Korteweg--de Vries Equation on a Star-Shaped Network

Kaïs Ammari and Emmanuelle Crépeau
SIAM Journal on Control and Optimization 56 (3) 1620 (2018)
https://doi.org/10.1137/17M113959X

On the semi-global stabilizability of the Korteweg-de Vries Equation via model predictive control

Behzad Azmi, Anne-Céline Boulanger and Karl Kunisch
ESAIM: Control, Optimisation and Calculus of Variations 24 (1) 237 (2018)
https://doi.org/10.1051/cocv/2017001

Global Stabilization of a Korteweg--De Vries Equation With Saturating Distributed Control

Swann Marx, Eduardo Cerpa, Christophe Prieur and Vincent Andrieu
SIAM Journal on Control and Optimization 55 (3) 1452 (2017)
https://doi.org/10.1137/16M1061837

Local exponential stabilization for a class of Korteweg–de Vries equations by means of time-varying feedback laws

Jean-Michel Coron, Ivonne Rivas and Shengquan Xiang
Analysis & PDE 10 (5) 1089 (2017)
https://doi.org/10.2140/apde.2017.10.1089

Well-posedness of a nonlinear boundary value problem for the Korteweg–de Vries equation on a bounded domain

Miguel Andres Caicedo and Bing-Yu Zhang
Journal of Mathematical Analysis and Applications 448 (2) 797 (2017)
https://doi.org/10.1016/j.jmaa.2016.11.032

A Korteweg–de Vries type of fifth-order equations on a finite domain with point dissipation

Guangyue Gao and Shu-Ming Sun
Journal of Mathematical Analysis and Applications 438 (1) 200 (2016)
https://doi.org/10.1016/j.jmaa.2016.01.050

Global stabilization of a Korteweg-de Vries equation with a distributed control saturated in L2-norm

Swann Marx, Eduardo Cerpa, Christophe Prieur and Vincent Andrieu
IFAC-PapersOnLine 49 (18) 122 (2016)
https://doi.org/10.1016/j.ifacol.2016.10.150

Boundary feedback stabilization of the Korteweg–de Vries–Burgers equation posed on a finite interval

Chaohua Jia
Journal of Mathematical Analysis and Applications 444 (1) 624 (2016)
https://doi.org/10.1016/j.jmaa.2016.06.063

Analysis and computation of a nonlinear Korteweg-de Vries system

Mauro A. Rincon, Juliana C. Xavier and Daniel G. Alfaro Vigo
BIT Numerical Mathematics 56 (3) 1069 (2016)
https://doi.org/10.1007/s10543-015-0589-2

Asymptotic stability of a nonlinear Korteweg–de Vries equation with critical lengths

Jixun Chu, Jean-Michel Coron and Peipei Shang
Journal of Differential Equations 259 (8) 4045 (2015)
https://doi.org/10.1016/j.jde.2015.05.010

Control and Stabilization of the Benjamin-Ono Equation in $${L^2({\mathbb{T})}}$$ L 2 ( T )

Camille Laurent, Felipe Linares and Lionel Rosier
Archive for Rational Mechanics and Analysis 218 (3) 1531 (2015)
https://doi.org/10.1007/s00205-015-0887-5

On the Well-posedness and Asymptotic Behavior of a Nonlinear Dispersive System in Weighted Spaces

A. F. Pazoto and G. R. Souza
Applied Mathematics & Optimization 69 (1) 141 (2014)
https://doi.org/10.1007/s00245-013-9220-6

Local rapid stabilization for a Korteweg–de Vries equation with a Neumann boundary control on the right

Jean-Michel Coron and Qi Lü
Journal de Mathématiques Pures et Appliquées 102 (6) 1080 (2014)
https://doi.org/10.1016/j.matpur.2014.03.004

Numerical studies of the damped Korteweg–de Vries system

M.A. Rincon, F.S. Teixeira and I.F. Lopez
Journal of Computational and Applied Mathematics 259 294 (2014)
https://doi.org/10.1016/j.cam.2013.09.045

Global well-posedness and exponential decay rates for a KdV–Burgers equation with indefinite damping

M.M. Cavalcanti, V.N. Domingos Cavalcanti, V. Komornik and J.H. Rodrigues
Annales de l'Institut Henri Poincaré C, Analyse non linéaire 31 (5) 1079 (2014)
https://doi.org/10.1016/j.anihpc.2013.08.003

Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system

Dugan Nina, Ademir Fernando Pazoto and Lionel Rosier
Evolution Equations & Control Theory 2 (2) 379 (2013)
https://doi.org/10.3934/eect.2013.2.379

Boundary Controllability of the Korteweg--de Vries Equation on a Bounded Domain

Eduardo Cerpa, Ivonne Rivas and Bing-Yu Zhang
SIAM Journal on Control and Optimization 51 (4) 2976 (2013)
https://doi.org/10.1137/120891721

Rapid Stabilization for a Korteweg-de Vries Equation From the Left Dirichlet Boundary Condition

Eduardo Cerpa and Jean-Michel Coron
IEEE Transactions on Automatic Control 58 (7) 1688 (2013)
https://doi.org/10.1109/TAC.2013.2241479

Well-posedness of a class of non-homogeneous boundary value problems of the Korteweg-de Vries equation on a finite domain

Eugene Kramer, Ivonne Rivas and Bing-Yu Zhang
ESAIM: Control, Optimisation and Calculus of Variations 19 (2) 358 (2013)
https://doi.org/10.1051/cocv/2012012

Decay of Solutions to Damped Korteweg–de Vries Type Equation

Marcelo M. Cavalcanti, Valéria N. Domingos Cavalcanti, Andrei Faminskii and Fábio Natali
Applied Mathematics & Optimization 65 (2) 221 (2012)
https://doi.org/10.1007/s00245-011-9156-7

Energy decay for the modified Kawahara equation posed in a bounded domain

F.D. Araruna, R.A. Capistrano-Filho and G.G. Doronin
Journal of Mathematical Analysis and Applications 385 (2) 743 (2012)
https://doi.org/10.1016/j.jmaa.2011.07.003

Global stabilization of a coupled system of two generalized Korteweg-de Vries type equations posed on a finite domain

Dugan Nina, Ademir Fernando Pazoto and Lionel Rosier
Mathematical Control & Related Fields 1 (3) 353 (2011)
https://doi.org/10.3934/mcrf.2011.1.353

Stabilization of the Kawahara equation with localized damping

Carlos F. Vasconcellos and Patricia N. da Silva
ESAIM: Control, Optimisation and Calculus of Variations 17 (1) 102 (2011)
https://doi.org/10.1051/cocv/2009041

Uniform stabilization of numerical schemes for the critical generalized Korteweg-de Vries equation with damping

A. F. Pazoto, M. Sepúlveda and O. Vera Villagrán
Numerische Mathematik 116 (2) 317 (2010)
https://doi.org/10.1007/s00211-010-0291-x

Control and Stabilization of the Korteweg-de Vries Equation on a Periodic Domain

Camille Laurent, Lionel Rosier and Bing-Yu Zhang
Communications in Partial Differential Equations 35 (4) 707 (2010)
https://doi.org/10.1080/03605300903585336

Pontryagin's maximum principle for optimal boundary control of a generalised Korteweg–de Vries equation

Bing Sun
International Journal of Systems Science 41 (6) 699 (2010)
https://doi.org/10.1080/00207720903151300

Qualitative aspects for the cubic nonlinear Schrödinger equations with localized damping: Exponential and polynomial stabilization

M.M. Cavalcanti, V.N. Domingos Cavalcanti, J.A. Soriano and F. Natali
Journal of Differential Equations 248 (12) 2955 (2010)
https://doi.org/10.1016/j.jde.2010.03.023

Asymptotic behavior of the Korteweg–de Vries equation posed in a quarter plane

F. Linares and A.F. Pazoto
Journal of Differential Equations 246 (4) 1342 (2009)
https://doi.org/10.1016/j.jde.2008.11.002

Control and stabilization of the Korteweg-de Vries equation: recent progresses

Lionel Rosier and Bing-Yu Zhang
Journal of Systems Science and Complexity 22 (4) 647 (2009)
https://doi.org/10.1007/s11424-009-9194-2

ON THE CONTROLLABILITY OF A COUPLED SYSTEM OF TWO KORTEWEG–DE VRIES EQUATIONS

SORIN MICU, JAIME H. ORTEGA and ADEMIR F. PAZOTO
Communications in Contemporary Mathematics 11 (05) 799 (2009)
https://doi.org/10.1142/S0219199709003600

Distributed Control of the Generalized Korteweg-de Vries-Burgers Equation

Nejib Smaoui and Rasha H. Al-Jamal
Mathematical Problems in Engineering 2008 1 (2008)
https://doi.org/10.1155/2008/621672

On the exponential decay of the critical generalized Korteweg-de Vries equation with localized damping

F. Linares and A. Pazoto
Proceedings of the American Mathematical Society 135 (5) 1515 (2007)
https://doi.org/10.1090/S0002-9939-07-08810-7

On the uniform decay for the Korteweg–de Vries equation with weak damping

C. P. Massarolo, G. P. Menzala and A. F. Pazoto
Mathematical Methods in the Applied Sciences 30 (12) 1419 (2007)
https://doi.org/10.1002/mma.847

Global Stabilization of the Generalized Korteweg--de Vries Equation Posed on a Finite Domain

Lionel Rosier and Bing-Yu Zhang
SIAM Journal on Control and Optimization 45 (3) 927 (2006)
https://doi.org/10.1137/050631409