Issue |
ESAIM: COCV
Volume 4, 1999
|
|
---|---|---|
Page(s) | 361 - 376 | |
DOI | https://doi.org/10.1051/cocv:1999113 | |
Published online | 15 August 2002 |
Stability and Stabilization of Discontinuous Systems and Nonsmooth Lyapunov Functions
1
Dipartimento di Matematica del Politecnico di Torino,
Corso Duca degli Abruzzi 24,
10129 Torino,
Italy; bacciotti@polito.it.
2
Dipartimento di Matematica “U. Dini",
Università di Firenze,
viale Morgagni 67/A,
50134 Firenze,
Italy; ceragio@udini.math.unifi.it.
Received:
8
September
1998
Revised:
9
April
1999
We study stability and stabilizability properties of systems with discontinuous righthand side (with solutions intended in Filippov's sense) by means of locally Lipschitz continuous and regular Lyapunov functions. The stability result is obtained in the more general context of differential inclusions. Concerning stabilizability, we focus on systems affine with respect to the input: we give some sufficient conditions for a system to be stabilized by means of a feedback law of the Jurdjevic-Quinn type.
Résumé
On étudie les propriétés de stabilité et stabilisation des systèmes avec second membre discontinu (les solutions étant prises dans le sens de Filippov) au moyen des fonctions de Lyapunov lipchitziennes et régulières. Le résultat de stabilité est obtenu dans le contexte plus général des inclusions différentielles. En ce qui concerne la stabilisation, on étudie des systèmes affines par rapport au contrôle : on donne des conditions suffisantes pour la stabilisation au moyen d'un retour d'état du type de Jurdjevic et Quinn.
Mathematics Subject Classification: 34D20 / 93D15
Key words: Stability / stabilization / Clarke gradient / Lyapunov functions / LaSalle principle.
© EDP Sciences, SMAI, 1999
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.