Free Access
Issue
ESAIM: COCV
Volume 4, 1999
Page(s) 361 - 376
DOI https://doi.org/10.1051/cocv:1999113
Published online 15 August 2002
  1. J.P. Aubin and A. Cellina, Differential Inclusions, Springer Verlag (1984). [Google Scholar]
  2. J. Auslander and P. Seibert, Prolongations and Stability in Dynamical Systems. Ann. Inst. Fourier (Grenoble) 14 (1964) 237-268. [MathSciNet] [Google Scholar]
  3. A. Bacciotti, Local Stabilizability Theory of Nonlinear System, World Scientific (1992). [Google Scholar]
  4. A. Bacciotti and L. Rosier, Liapunov and Lagrange Stability: Inverse Theorems for Discontinuous Systems. Mathematics of Control, Signals and Systems 11 (1998) 101-128. [Google Scholar]
  5. N.P. Bhatia and G.P. Szëgo, Stability Theory of Dynamical Systems, Springer Verlag (1970). [Google Scholar]
  6. F.H. Clarke, Optimization and Nonsmooth Analysis, Wiley and Sons (1983). [Google Scholar]
  7. F.H. Clarke, Yu.S. Ledyaev, E.D. Sontag and A.I. Subbotin, Asymptotic Controllability Implies Feeedback Stabilization. IEEE Trans. Automat. Control 42 (1997) 1394-1407. [CrossRef] [MathSciNet] [Google Scholar]
  8. F.H. Clarke, Yu.S. Ledyaev, R.J. Stern and P.R. Wolenski, Qualitative Properties of Control Systems: A Survey. J. Dynam. Control Systems 1 (1995) 1-47. [CrossRef] [MathSciNet] [Google Scholar]
  9. J.M. Coron and L. Rosier, A Relation between Continuous Time-Varying and Discontinuous Feedback Stabilization. J. Math. Systems, Estimation and Control 4 (1994) 67-84. [Google Scholar]
  10. K. Deimling, Multivalued Differential Equations, de Gruyter (1992). [Google Scholar]
  11. L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions, CRC (1992). [Google Scholar]
  12. A.F. Filippov, Differential Equations with Discontinuous Righthandside, Kluwer Academic Publishers (1988). [Google Scholar]
  13. R.A. Freeman and P.V. Kokotovic, Backstepping Design with Nonsmooth Nonlinearities, IFAC NOLCOS, Tahoe City, California (1995) 483-488. [Google Scholar]
  14. V. Jurdjevic and J.P. Quinn, Controllability and Stability. J. Differential Equations 28 (1978) 381-389. [Google Scholar]
  15. O. Hájek, Discontinuous Differential Equations. I, II. J. Differential Equations 32 (1979) 149-170, 171-185. [Google Scholar]
  16. L. Mazzi and V. Tabasso, On Stabilization of Time-Dependent Affine Control Systems. Rend. Sem. Mat. Univ. Politec. Torino 54 (1996) 53-66. [MathSciNet] [Google Scholar]
  17. E.J. McShane, Integration, Princeton University Press (1947). [Google Scholar]
  18. B. Paden and S. Sastry, A Calculus for Computing Filippov's Differential Inclusion with Application to the Variable Structure Control of Robot Manipulators. IEEE Trans. Circuits and Systems Cas-34 (1997) 73-81. [Google Scholar]
  19. E.P. Ryan, An Integral Invariance Principle for Differential Inclusions with Applications in Adaptive Control. SIAM J. Control 36 (1998) 960-980. [CrossRef] [MathSciNet] [Google Scholar]
  20. D. Shevitz and B. Paden, Lyapunov Stability Theory of Nonsmooth Systems. IEEE Trans. Automat. Control 39 (1994) 1910-1914. [Google Scholar]
  21. E.D. Sontag, A Lyapunov-like Characterization of Asymptotic Controllability. SIAM J. Control Optim. 21 (1983) 462-471. [CrossRef] [MathSciNet] [Google Scholar]
  22. E.D. Sontag and H. Sussmann, Nonsmooth Control Lyapunov Functions, Proc. IEEE Conf. Decision and Control, New Orleans, IEEE Publications (1995) 2799-2805. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.