Issue |
ESAIM: COCV
Volume 4, 1999
|
|
---|---|---|
Page(s) | 83 - 98 | |
DOI | https://doi.org/10.1051/cocv:1999104 | |
Published online | 15 August 2002 |
Approximate controllability and its well-posedness for the semilinear reaction-diffusion equation with internal lumped controls
Department of Pure and Applied Mathematics,
Washington State University, Pullman, WA 99164-3113, USA;
khapala@delta.math.wsu.edu.
Received:
22
April
1997
Revised:
24
June
1998
We consider the one dimensional semilinear reaction-diffusion equation, governed in Ω = (0,1) by controls, supported on any subinterval of (0, 1), which are the functions of time only. Using an asymptotic approach that we have previously introduced in [9], we show that such a system is approximately controllable at any time in both L2(0,1)( and C0[0,1], provided the nonlinear term f = f(x,t, u) grows at infinity no faster than certain power of log |u|. The latter depends on the regularity and structure of f (x, t, u) in x and t and the choice of the space for controllability. We also show that our results are well-posed in terms of the “actual steering” of the system at hand, even in the case when it admits non-unique solutions.
Résumé
On étudie l'équation de la chaleur semi-linéaire sur l'intervalle (0,1) avec des contrôles internes sur un sous-intervalle et qui ne sont que des fonctions du temps. Utilisant une approche asymptotique que nous avons précédemment introduite dans [9], on montre la contrôlabilité approchée pour tout temps à la fois dans L2(0,1) et dans C0[0,1] si le terme non linéaire f = f(x,t, u) ne croit pas plus vite qu'une certaine puissance de log |u|. Celle-ci dépend de la régularité et de la structure de f (x, t, u) par rapport à x et t et du choix de l'espace pour la contrôlabilité. On montre aussi que nos résultats permettent de piloter le système considéré, même dans le cas où l'on n'a pas unicité des solutions.
Mathematics Subject Classification: 93 35
Key words: The semilinear reaction-diffusion equation / approximate controllability / internal lumped control multiple solutions.
© EDP Sciences, SMAI, 1999
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.