Issue |
ESAIM: COCV
Volume 5, 2000
|
|
---|---|---|
Page(s) | 477 - 500 | |
DOI | https://doi.org/10.1051/cocv:2000118 | |
Published online | 15 August 2002 |
Optimal control of stationary, low Mach number, highly nonisothermal, viscous flows
1
Department of Mathematics,
Iowa State University, Ames IA 50011-2064, U.S.A.; gunzburg@iastate.edu.
2
Department of Mathematics,
Iowa State University, Ames IA 50011-2064, U.S.A.; vika@iastate.edu.
Received:
31
January
2000
An optimal control problem for a model for stationary, low Mach number, highly nonisothermal, viscous flows is considered. The control problem involves the minimization of a measure of the distance between the velocity field and a given target velocity field. The existence of solutions of a boundary value problem for the model equations is established as is the existence of solutions of the optimal control problem. Then, a derivation of an optimality system, i.e., a boundary value problem from which the optimal control and state may be determined, is given.
Résumé
Dans cet article, on considère un problème de contrôle optimal pour un fluide visqueux, stationnaire et fortement non-isothermique, à petit nombre de Mach. On regarde d'abord un problème de minimisation pour l'écart entre le champ de vitesse et un champ de vitesse donné. On montre l'existence de solutions pour ce problème ainsi que pour le problème de contrôle optimal initial. On donne ensuite un système vérifié par les solutions du probléme de contrôle optimal, système qui consiste en un problème aux limites dont on peut obtenir le contrôle optimal et l'état.
Mathematics Subject Classification: 49J20 / 49K20 / 76N99
Key words: Optimal control / compressible flows / viscous flows / low Mach number flows.
© EDP Sciences, SMAI, 2000
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.