Issue |
ESAIM: COCV
Volume 14, Number 2, April-June 2008
|
|
---|---|---|
Page(s) | 254 - 283 | |
DOI | https://doi.org/10.1051/cocv:2007044 | |
Published online | 20 March 2008 |
L∞-Norm minimal control of the wave equation: on the weakness of the bang-bang principle
Lehrstuhl 2 für Angewandte Mathematik, Martensstr. 3, 91058
Erlangen, Germany;
gugat@am.uni-erlangen.de; leugering@am.uni-erlangen.de
Received:
7
December
2005
Revised:
6
March
2006
Revised:
11
September
2006
For optimal control problems with ordinary differential equations where the L∞-norm of the control is minimized, often bang-bang principles hold. For systems that are governed by a hyperbolic partial differential equation, the situation is different: even if a weak form of the bang-bang principle still holds for the wave equation, it implies no restriction on the form of the optimal control. To illustrate that for the Dirichlet boundary control of the wave equation in general not even feasible controls of bang-bang type exist, we examine the states that can be reached by bang-bang-off controls, that is controls that are allowed to attain only three values: Their maximum and minimum values and the value zero. We show that for certain control times, the difference between the initial and the terminal state can only attain a finite number of values. For the problems of optimal exact and approximate boundary control of the wave equation where the L∞-norm of the control is minimized, we introduce dual problems and present the weak form of a bang-bang principle, that states that the values of -norm minimal controls are constrained by the sign of the dual solutions. Since these dual solutions are in general given as measures, this is no restriction on the form of the control function: the dual solution may have a finite support, and when the dual solution vanishes, the control is allowed to attain all values from the interval between the two extremal control values.
Mathematics Subject Classification: 49K20 / 35L05
Key words: Optimal control of pdes / optimal boundary control / wave equation / bang-bang / bang-bang-off / dual problem / dual solutions / L∞ / measures
© EDP Sciences, SMAI, 2008
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.