Free Access
Issue
ESAIM: COCV
Volume 14, Number 2, April-June 2008
Page(s) 254 - 283
DOI https://doi.org/10.1051/cocv:2007044
Published online 20 March 2008
  1. A. Barvinok, A course in convexity. AMS, Providence, Rhode Island (2002). [Google Scholar]
  2. J.K. Bennighof and R.L. Boucher, Exact minimum-time control of a distributed system using a traveling wave formulation. J. Optim. Theory Appl 73 (1992) 149–167. [CrossRef] [MathSciNet] [Google Scholar]
  3. F.H. Clarke, Optimization and Nonsmooth Analysis. John Wiley, New York (1983). [Google Scholar]
  4. A. Dovretzki, On Liapunov's convexity theorem. Proc. Natl. Acad. Sci 91 (1994) 2145. [CrossRef] [Google Scholar]
  5. V. Drobot, An infinte-dimensional version of Liapunov's convexity theorem. Michigan Math. J 17 (1970) 405–408. [CrossRef] [MathSciNet] [Google Scholar]
  6. C. Fabre, J.-P. Puel and E. Zuazua, Contrôlabilité approchée de l'équation de la chaleur linéaire avec des contrôles de norme Formula minimale. (Approximate controllability for the linear heat equation with controls of minimal Formula norm). C. R. Acad. Sci., Paris, Sér. I 316 (1993) 679–684. [Google Scholar]
  7. C. Fabre, J.-P. Puel and E. Zuazua, Approximate controllability of the semilinear heat equation. Proc. R. Soc. Edinb., Sect. A 125 (1995) 31–61. [Google Scholar]
  8. M. Gugat, Time-parametric control: Uniform convergence of the optimal value functions of discretized problems. Contr. Cybern 28 (1999) 7–33. [Google Scholar]
  9. M. Gugat and G. Leugering, Regularization of Formula -optimal control problems for distributed parameter systems. Comput. Optim. Appl 22 (2002) 151–192. [CrossRef] [MathSciNet] [Google Scholar]
  10. M. Gugat, G. Leugering and G. Sklyar, lp-optimal boundary control for the wave equation. SIAM J. Control Optim 44 (2005) 49–74. [CrossRef] [MathSciNet] [Google Scholar]
  11. H. Hermes and J. Lasalle. Functional analysis and time optimal control. Academic Press (1969). [Google Scholar]
  12. T. Kato, Linear evolution equations of hyperbolic type. Univ. Tokyo Sec. I 17 (1970) 241–258. [Google Scholar]
  13. T. Kato, Perturbation theory for linear operators, Corr. printing of the 2nd edn. Springer (1980). [Google Scholar]
  14. W. Krabs, On moment theory and controllability of one-dimensional vibrating systems and heating processes, Lecture Notes in Control and Information Science 173. Springer-Verlag, Heidelberg (1992). [Google Scholar]
  15. W. Krabs, Optimal Control of Undamped Linear Vibrations. Heldermann Verlag, Lemgo, Germany (1995). [Google Scholar]
  16. C.M. Lee and F.D.K. Roberts, A comparison of algorithms for rational Formula approximation. Math. Comp 27 (1973) 111–121. [MathSciNet] [Google Scholar]
  17. E.B. Lee and L. Markus, Foundations of Optimal Control Theory. Wiley, New York (1968). [Google Scholar]
  18. J.-L. Lions, Exact controllability, stabilization and perturbations of distributed systems. SIAM Rev 30 (1988) 1–68. [CrossRef] [MathSciNet] [Google Scholar]
  19. A. Lyapunov, Sur les fonctions-vecteurs complètement additives. Bull. Acad. Sci. URSS, Sér. Math 4 (1940) 465–478. [Google Scholar]
  20. J. Macki and A. Strauss, Introduction to Optimal Control Theory. Springer-Verlag, New York (1982). [Google Scholar]
  21. V.J. Mizel and T.I. Seidman, An abstract bang-bang principle and time-optimal boundary control of the heat equation. SIAM J. Control Optim 35 (1997) 1204–1216. [CrossRef] [MathSciNet] [Google Scholar]
  22. N. Papageorgiu, Measurable multifunctions and their applications to convex integral functionals. Internat. J. Math. Math. Sciences 12 (1989) 175–192. [CrossRef] [Google Scholar]
  23. G.K. Pedersen, Analysis Now. Springer-Verlag, New York (1989). [Google Scholar]
  24. R.T. Rockafellar, Convex Analysis. Princeton University Press (1970). [Google Scholar]
  25. K. Yosida, Functional Analysis. Springer, Berlin (1965). [Google Scholar]
  26. E. Zuazua, Optimal and approximate control of finite-difference approximation schemes for the 1d wave equation. Rend. Mat. Appl 24 (2004) 201–237. [MathSciNet] [Google Scholar]
  27. E. Zuazua, Propagation, observation. and control of waves approximated by finite difference methods. SIAM Rev 47 (2005) 197–243. [CrossRef] [MathSciNet] [Google Scholar]
  28. E. Zuazua, Controllability of partial differential equations: Some results and open problems, in Handbook of Differential Equations: Evolutionary Differential Equations, C. Dafermos and E. Feireisl Eds., Elsevier Science (2006). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.