Issue |
ESAIM: COCV
Volume 15, Number 3, July-September 2009
|
|
---|---|---|
Page(s) | 555 - 568 | |
DOI | https://doi.org/10.1051/cocv:2008035 | |
Published online | 30 May 2008 |
Spectrum of the Laplacian in a narrow curved strip with combined Dirichlet and Neumann boundary conditions
Department of Theoretical Physics, Nuclear Physics Institute,
Academy of Sciences, 250 68 Řež near Prague, Czech Republic;
krejcirik@ujf.cas.cz
Received:
31
May
2007
Revised:
10
December
2007
We consider the Laplacian in a domain squeezed between two parallel curves in the plane, subject to Dirichlet boundary conditions on one of the curves and Neumann boundary conditions on the other. We derive two-term asymptotics for eigenvalues in the limit when the distance between the curves tends to zero. The asymptotics are uniform and local in the sense that the coefficients depend only on the extremal points where the ratio of the curvature radii of the Neumann boundary to the Dirichlet one is the biggest. We also show that the asymptotics can be obtained from a form of norm-resolvent convergence which takes into account the width-dependence of the domain of definition of the operators involved.
Mathematics Subject Classification: 35P15 / 49R50 / 58J50 / 81Q15
Key words: Laplacian in tubes / Dirichlet and Neumann boundary conditions / dimension reduction / norm-resolvent convergence / binding effect of curvature / waveguides
© EDP Sciences, SMAI, 2008
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.