Issue |
ESAIM: COCV
Volume 21, Number 1, January-March 2015
|
|
---|---|---|
Page(s) | 190 - 216 | |
DOI | https://doi.org/10.1051/cocv/2014023 | |
Published online | 09 December 2014 |
One-dimensional swimmers in viscous fluids: dynamics, controllability, and existence of optimal controls
1 SISSA, Via Bonomea, 265, 34136 Trieste, Italy.
dalmaso@sissa.it; desimone@sissa.it
2 Departamento de Matemática, Instituto Superior Técnico, Av.
Rovisco Pais, 1, 1049-001 Lisboa, Portugal.
marco.morandotti@tecnico.ulisboa.pt
Received:
9
January
2013
Revised:
2
May
2014
In this paper we study a mathematical model of one-dimensional swimmers performing a planar motion while fully immersed in a viscous fluid. The swimmers are assumed to be of small size, and all inertial effects are neglected. Hydrodynamic interactions are treated in a simplified way, using the local drag approximation of resistive force theory. We prove existence and uniqueness of the solution of the equations of motion driven by shape changes of the swimmer. Moreover, we prove a controllability result showing that given any pair of initial and final states, there exists a history of shape changes such that the resulting motion takes the swimmer from the initial to the final state. We give a constructive proof, based on the composition of elementary maneuvers (straightening and its inverse, rotation, translation), each of which represents the solution of an interesting motion planning problem. Finally, we prove the existence of solutions for the optimal control problem of finding, among the histories of shape changes taking the swimmer from an initial to a final state, the one of minimal energetic cost.
Mathematics Subject Classification: 76Z10 / 74F10 / 49J21 / 93B05
Key words: Motion in viscous fluids / fluid-solid interaction / micro-swimmers / resistive force theory / controllability / optimal control
© EDP Sciences, SMAI 2014
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.