Issue |
ESAIM: COCV
Volume 23, Number 1, January-March 2017
|
|
---|---|---|
Page(s) | 337 - 371 | |
DOI | https://doi.org/10.1051/cocv/2015054 | |
Published online | 13 December 2016 |
Necessary stochastic maximum principle for dissipative systems on infinite time horizon∗,∗∗
1 Dipartimento di Matematica,
Università di Pavia. via Ferrata 1,
27100
Pavia,
Italia
carlo.orrieri01@ateneopv.it
2 Dipartimento di
Matematica, Politecnico di Milano. via Bonardi 9, 20133
Milano,
Italia
petr.veverka@polimi.it
Received:
26
March
2015
Revised:
20
October
2015
Accepted:
5
December
2015
We develop a stochastic maximum principle for a finite-dimensional stochastic control problem in infinite horizon under a polynomial growth and joint monotonicity assumption on the coefficients. The second assumption generalizes the usual one in the sense that it is formulated as a joint condition for the drift and the diffusion term. The main difficulties concern the construction of the first and second order adjoint processes by solving backward equations on an unbounded time interval. The first adjoint process is characterized as a solution to a backward SDE, which is well-posed thanks to a duality argument. The second one can be defined via another duality relation written in terms of the Hamiltonian of the system and linearized state equation. Some known models verifying the joint monotonicity assumption are discussed as well.
Mathematics Subject Classification: 93E20 / 60H10 / 49K45
Key words: Stochastic maximum principle / dissipative systems / backward stochastic differential equation / stochastic discounted control problem / infinite time horizon / necessary conditions for optimality
© EDP Sciences, SMAI 2016
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.