Issue |
ESAIM: COCV
Volume 5, 2000
|
|
---|---|---|
Page(s) | 71 - 85 | |
DOI | https://doi.org/10.1051/cocv:2000102 | |
Published online | 15 August 2002 |
Relaxation of singular functionals defined on Sobolev spaces
1
Département de Mathématiques,
Institut Préparatoire aux Études d'Ingénieurs de
Sfax, Route Menzel Chaker - Km 0,5, BP. 805, 3000 Sfax,
Tunisia; Fax: (00-216) 4. 246. 347.
2
Max-Planck Institute for Mathematics in the Sciences,
Inselstr. 22-26, 04103 Leipzig, Germany; Hafedh.Belgacem@mis.mpg.de.
Received:
1
December
1998
Revised:
17
November
1999
In this paper, we consider a Borel measurable function on the space of matrices taking the value , such that its rank-one-convex envelope is finite and satisfies for some fixed : where . Let be a given regular bounded open domain of . We define on the functional Then, under some technical restrictions on , we show that the relaxed functional for the weak topology of has the integral representation: where for a given function , denotes its quasiconvex envelope.
Résumé
On considère une fonction Borel mesurable qui prend la valeur , dont l'enveloppe rang-1-convexe Rf est finie et satisfait pour un certain p>1, avec fixés. Étant donné un ouvert borné Ω de , on introduit la fonctionnelle pour . On montre alors sous quelques hypothèses supplémentaires concernant f, que la relaxée de I pour la topolgie faible de admet la représentation suivante : où pour une fonction donnée g, Qg désigne son enveloppe quasi-convexe.
Mathematics Subject Classification: 49-xx
Key words: Rank-one convexity / quasiconvexity / weak lower semicontinuity.
© EDP Sciences, SMAI, 2000
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.