Free Access
Volume 5, 2000
Page(s) 71 - 85
Published online 15 August 2002
  1. E. Acerbi, G. Buttazzo and D. Percivale, A variational definition of the strain energy for an elastic string. J. Elasticity 25 (1991) 137-148. [CrossRef] [MathSciNet] [Google Scholar]
  2. E. Acerbi and N. Fusco, Semicontinuity problems in the calculus of variations. Arch. Rational Mech. Anal. 86 (1984) 125-145. [CrossRef] [MathSciNet] [Google Scholar]
  3. G. Anzellotti, S. Baldo and D. Percivale, Dimension reduction in variational problems, asymptotic development in Formula -convergence, and thin structures in elasticity. Asymptot. Anal. 9 (1994) 61-100. [Google Scholar]
  4. J.M. Ball, Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal. 63 (1977) 337-403. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  5. J.M. Ball and F. Murat, W1,p-quasiconvexity and variational problems for multiple integrals. J. Funct. Anal. 58 (1984) 225-253. [CrossRef] [MathSciNet] [Google Scholar]
  6. J.M. Ball and R.D. James, Fine phase mixtures as minimizers of energy. Arch. Rational Mech. Anal. 100 (1987) 13-52. [CrossRef] [MathSciNet] [Google Scholar]
  7. H. Ben Belgacem, Une méthode de Formula -convergence pour un modèle de membrane non linéaire. C. R. Acad. Sci. Paris. Sér. I Math. (1996) 845-849. [Google Scholar]
  8. H. Ben Belgacem, Modélisation de structures minces en élasticité non linéaire. Thèse de l'Université Pierre et Marie Curie, Paris (1996). [Google Scholar]
  9. G. Bouchitté, I. Fonseca and J. Malý, The effective bulk energy of the relaxed energy of multiple integrals below the growth exponent. Proc. Roy. Soc. Edinburgh Sect. A 128 (1998) 463-479. [CrossRef] [MathSciNet] [Google Scholar]
  10. P.G. Ciarlet, Mathematical Elasticity. Vol. I: Three-dimensional Elasticity. North-Holland, Amesterdam (1988). [Google Scholar]
  11. B. Dacorogna, Quasiconvexity and relaxation of non convex problems in the calculus of variations. J. Funct. Anal. 46 (1982) 102-118. [CrossRef] [MathSciNet] [Google Scholar]
  12. B. Dacorogna, Remarques sur les notions de polyconvexité, quasiconvexité et convexité de rang 1. J. Math. Pures Appl. 64 (1985) 403-438. [MathSciNet] [Google Scholar]
  13. B. Dacorogna, Direct Methods in the Calculus of Variations. Springer-Verlag, Berlin, Appl. Math. Sci. 78 (1989). [Google Scholar]
  14. B. Dacorogna and P. Marcellini, General existence theorems for Hamilton-Jacobi equations in the scalar and vectoriel cases. Acta Math. 178 (1997) 1-37. [CrossRef] [MathSciNet] [Google Scholar]
  15. I. Ekeland and R. Temam, Analyse convexe et problèmes variationnels. Dunod, Paris (1974). [Google Scholar]
  16. I. Fonseca, The lower quasiconvex envelope of the stored energy for an elastic crystal. J. Math. Pures Appl. 67 (1988) 175-195. [MathSciNet] [Google Scholar]
  17. I. Fonseca, Variational techniques for problems in materials science. Progr. Nonlinear Differential Equations Appl. 25 (1996) 162-175. [Google Scholar]
  18. I. Fonseca and J. Malý, Relaxation of multiple integrals below the growth exponent. Ann. Inst. H. Poincaré 14 (1997) 309-338. [CrossRef] [MathSciNet] [Google Scholar]
  19. R.V. Kohn and G. Strang, Explicit relaxation of a variational problem in optimal design. Bull. Amer. Math. Soc. 9 (1983) 211-214. [CrossRef] [MathSciNet] [Google Scholar]
  20. R.V. Kohn and G. Strang, Optimal design and relaxation of variational problems I, II and III. Comm. Pure Appl. Math. 39 (1986) 113-137, 139-182, 353-377. [Google Scholar]
  21. H. Le Dret and A. Raoult, Le modèle de membrane non linéaire comme limite variationnelle de l'élasticité non linéaire tridimensionnelle. C. R. Acad. Sci. Paris Sér. I Math. (1993) 221-226. [Google Scholar]
  22. H. Le Dret and A. Raoult, The nonlinear membrane model as variational limit of three-dimensional nonlinear elasticity. J. Math. Pures Appl. 74 (1995) 549-578. [MathSciNet] [Google Scholar]
  23. P. Marcellini, Approximation of quasiconvex functions and lower semicontinuity of multiple integrals. Manuscripta Math. 51 (1985) 1-28. [CrossRef] [MathSciNet] [Google Scholar]
  24. P. Marcellini, On the definition and weak lower semicontinuity of certain quasiconvex integrals. Ann. Inst. H. Poincaré 3 (1986) 391-409. [Google Scholar]
  25. C.B. Morrey Jr., Quasi-convexity and the lower semi-continuity of multiple integrals. Pacific J. Math. 2 (1952) 25-53. [CrossRef] [MathSciNet] [Google Scholar]
  26. C.B. Morrey Jr., Multiple Integrals in the Calculus of Variations. Springer, Berlin (1966). [Google Scholar]
  27. S. Müller, Variational models for microstructure and phase transitions, to appear in Proc. C.I.M.E. summer school ``Calculus of variations and geometric evolution problems''. Cetraro (1996). [Google Scholar]
  28. R.W. Ogden, Large deformation isotropic elasticity: On the correlation of the theory and experiment for compressible rubberlike solids. Proc. Roy. Soc. London Ser. A 328 (1972). [Google Scholar]
  29. E.T. Rockafellar, Convex Analysis. Princeton University Press (1970). [Google Scholar]
  30. L. Tartar, Compensated Compactness and Applications to Partial Differential Equations, in Nonlinear Analysis and Mechanics, Heriot-Watt Symp. Vol. IV, R.J. Knops Ed. Pitman, London (1979). [Google Scholar]
  31. V. Zhikov, Lavrentiev phenomenon and homogenization for some variational problems. C. R. Acad. Sci. Paris Sér. I Math. (1993) 435-439. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.