Free Access
Volume 4, 1999
Page(s) 1 - 35
Published online 15 August 2002
  1. M.K. Bennani and P. Rouchon, Robust stabilization of flat and chained systems, in European Control Conference (ECC) (1995) 2642-2646. [Google Scholar]
  2. R.W. Brockett, Asymptotic stability and feedback stabilization, Differential Geometric Control Theory, R.S. Millman R.W. Brockett and H.H. Sussmann Eds., Birkauser (1983). [Google Scholar]
  3. C. Canudas de Wit and O. J. Sørdalen, Exponential stabilization of mobile robots with nonholonomic constraints. IEEE Trans. Automat. Control 37 (1992) 1791-1797. [CrossRef] [MathSciNet] [Google Scholar]
  4. M. Fliess, J. Lévine, P. Martin and P. Rouchon, Flatness and defect of non-linear systems: introductory theory and examples. Internat. J. Control 61 (1995) 1327-1361. [CrossRef] [MathSciNet] [Google Scholar]
  5. H. Hermes, Nilpotent and high-order approximations of vector field systems. SIAM Rev. 33 (1991) 238-264. [CrossRef] [MathSciNet] [Google Scholar]
  6. A. Isidori, Nonlinear control systems. Springer Verlag, third edition (1995). [Google Scholar]
  7. M. Kawski, Geometric homogeneity and stabilization, in IFAC Nonlinear Control Systems Design Symp. (NOLCOS) (1995) 164-169. [Google Scholar]
  8. I. Kolmanovsky and N.H. McClamroch, Developments in nonholonomic control problems. IEEE Control Systems (1995) 20-36. [Google Scholar]
  9. J. Kurzweil and J. Jarnik, Iterated lie brackets in limit processes in ordinary differential equations. Results in Mathematics 14 (1988) 125-137. [Google Scholar]
  10. Z. Li and J.F. Canny, Nonholonomic motion planning. Kluwer Academic Press (1993). [Google Scholar]
  11. W. Liu, An approximation algorithm for nonholonomic systems. SIAM J. Contr. Opt. 35 (1997) 1328-1365. [CrossRef] [MathSciNet] [Google Scholar]
  12. D.A. Lizárraga, P. Morin and C. Samson, Non-robustness of continuous homogeneous stabilizers for affine systems. Technical Report 3508, INRIA (1998). Available at [Google Scholar]
  13. R.T. M'Closkey and R.M. Murray, Exponential stabilization of driftless nonlinear control systems using homogeneous feedback. IEEE Trans. Automat. Contr. 42 (1997) 614-628. [CrossRef] [MathSciNet] [Google Scholar]
  14. S. Monaco and D. Normand-Cyrot, An introduction to motion planning using multirate digital control, in IEEE Conf. on Decision and Control (CDC) (1991) 1780-1785. [Google Scholar]
  15. P. Morin, J.-B. Pomet and C. Samson, Design of homogeneous time-varying stabilizing control laws for driftless controllable systems via oscillatory approximation of lie brackets in closed-loop. SIAM J. Contr. Opt. (to appear). [Google Scholar]
  16. P. Morin, J.-B. Pomet and C. Samson, Developments in time-varying feedback stabilization of nonlinear systems, in IFAC Nonlinear Control Systems Design Symp. (NOLCOS) (1998) 587-594. [Google Scholar]
  17. P. Morin and C. Samson, Exponential stabilization of nonlinear driftless systems with robustness to unmodeled dynamics. Technical Report 3477, INRIA (1998). [Google Scholar]
  18. R.M. Murray and S.S. Sastry, Nonholonomic motion planning: Steering using sinusoids. IEEE Trans. Automat. Contr. 38 (1993) 700-716. [Google Scholar]
  19. L. Rosier, Étude de quelques problèmes de stabilisation. PhD thesis, École Normale de Cachan (1993). [Google Scholar]
  20. C. Samson, Velocity and torque feedback control of a nonholonomic cart, in Int. Workshop in Adaptative and Nonlinear Control: Issues in Robotics. LNCIS, Vol. 162, Springer Verlag, 1991 (1990). [Google Scholar]
  21. O.J. Sørdalen and O. Egeland, Exponential stabilization of nonholonomic chained systems. IEEE Trans. Automat. Contr. 40 (1995) 35-49. [CrossRef] [MathSciNet] [Google Scholar]
  22. G. Stefani, Polynomial approximations to control systems and local controllability, in IEEE Conf. on Decision and Control (CDC) (1985) 33-38. [Google Scholar]
  23. G. Stefani, On the local controllability of scalar-input control systems, in Theory and Applications of Nonlinear Control Systems, Proc. of MTNS'84, C.I. Byrnes and A. Linsquist Eds., North-Holland (1986) 167-179. [Google Scholar]
  24. H.J. Sussmann and W. Liu, Limits of highly oscillatory controls ans approximation of general paths by admissible trajectories, in IEEE Conf. on Decision and Control (CDC) (1991) 437-442. [Google Scholar]
  25. H.J. Sussmann, Lie brackets and local controllability: a sufficient condition for scalar-input systems. SIAM J. Contr. Opt. 21 (1983) 686-713. [CrossRef] [Google Scholar]
  26. H.J. Sussmann, A general theorem on local controllability. SIAM J. Contr. Opt. 25 (1987) 158-194. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.