Free Access
Volume 4, 1999
Page(s) 445 - 471
Published online 15 August 2002
  1. Z. Artstein, Stabilization with relaxed controls. Nonlinear Anal. 7 (1983) 1163-1173. [CrossRef] [MathSciNet] [Google Scholar]
  2. A. Bacciotti, Local stabilizability of nonlinear control systems. Series on advances in mathematics for applied sciences 8, World Scientific, Singapore (1992). [Google Scholar]
  3. R.W. Brockett, Asymptotic stability and feedback stabilization, in Differential Geometric Control Theory, R.W. Brockett, R.S. Millman and H.J. Sussmann, Eds., Birkhauser, Boston (1983) 181-191. [Google Scholar]
  4. F.H. Clarke, Yu.S. Ledyaev, E.D. Sontag and A.I. Subbotin, Asymptotic controllability implies feedback stabilization. IEEE Trans. Automat. Control 42 (1997) 1394-1407. [CrossRef] [MathSciNet] [Google Scholar]
  5. F.H. Clarke, Yu.S. Ledyaev, L. Rifford and R.J. Stern, Feedback stabilization and Lyapunov functions, to appear. [Google Scholar]
  6. F.H. Clarke, Yu.S. Ledyaev, R.J. Stern and P.R. Wolenski, Qualitative properties of trajectories of control systems: A survey. J. Dynamic Control Systems 1 (1995) 1-47. [Google Scholar]
  7. F.H. Clarke, Yu.S. Ledyaev, R.J. Stern and P.R. Wolenski, Nonsmooth analysis and control theory 178, Springer-Verlag, New York (1998). [Google Scholar]
  8. G. Colombo, On extremal solutions of differential inclusions. Bull. Polish. Acad. Sci. 40 (1992) 97-109. [Google Scholar]
  9. J.-M. Coron, A necessary condition for feedback stabilization. Systems Control Lett. 14 (1990) 227-232. [CrossRef] [MathSciNet] [Google Scholar]
  10. J.-M. Coron and L. Rosier, A relation between continuous time-varying and discontinuous feedback stabilization. J. Math. Systems, Estimation, and Control 4 (1994) 67-84. [Google Scholar]
  11. J.-M. Coron, Global asymptotic stabilization for controllable systems without drift. Math. of Control, Signals, and Systems 5 (1992) 295-312. [Google Scholar]
  12. J.-M. Coron, Stabilization in finite time of locally controllable systems by means of continuous time-varying feedback laws. SIAM J. Control Optim. 33 (1995) 804-833. [CrossRef] [MathSciNet] [Google Scholar]
  13. J.-M. Coron, L. Praly and A. Teel, Feedback stabilization of nonlinear systems: sufficient conditions and Lyapunov and input-output techniques, in Trends in Control: A European Perspective, A. Isidori, Eds., Springer, London (1995) 293-348. [Google Scholar]
  14. A.F. Filippov, Differential Equations with Discontinuous Right-Hand Sides, Kluwer Acad. Publ. (1988). [Google Scholar]
  15. O. Hájek, Discontinuos differential equations, I-II. J. Differential Equations 32 (1979) 149-185. [CrossRef] [MathSciNet] [Google Scholar]
  16. H. Hermes, Discontinuous vector fields and feedback control, in Differential Equations and Dynamical Systems, J.K. Hale and J.P. La Salle, Eds., Academic Press, New York, (1967) 155-165. [Google Scholar]
  17. H. Hermes, On the synthesis of stabilizing feedback controls via Lie algebraic methods. SIAM J. Control Optim. 10 (1980) 352-361. [Google Scholar]
  18. N.N. Krasovskii and A.I. Subbotin, Positional differential games, Nauka, Moscow, (1974) [in Russian]. Revised English translation: Game-theoretical control problems, Springer-Verlag, New York (1988). [Google Scholar]
  19. Yu.S. Ledyaev and E.D. Sontag, A remark on robust stabilization of general asymptotically controllable systems, in Proc. Conf. on Information Sciences and Systems (CISS 97), Johns Hopkins, Baltimore, MD (1997) 246-251. [Google Scholar]
  20. Yu.S. Ledyaev and E.D. Sontag, A Lyapunov characterization of robust stabilization. J. Nonlinear Anal. to appear. [Google Scholar]
  21. S. Nikitin, Piecewise-constant stabilization. SIAM J. Control Optim. to appear. [Google Scholar]
  22. E.P. Ryan, On Brockett's condition for smooth stabilizability and its necessity in a context of nonsmooth feedback. SIAM J. Control Optim. 32 (1994) 1597-1604. [CrossRef] [MathSciNet] [Google Scholar]
  23. E.D. Sontag and H.J. Sussmann, Remarks on continuous feedback, in Proc. IEEE Conf. Decision and Control, Aulbuquerque, IEEE Publications, Piscataway (1980) 916-921. [Google Scholar]
  24. E.D. Sontag, Nonlinear regulation: The piecewise linear approach. IEEE Trans. Automat. Control 26 (1981) 346-358. [CrossRef] [MathSciNet] [Google Scholar]
  25. E.D. Sontag, Feedback stabilization of nonlinear systems, in Robust Control of Linear Systems and Nonlinear Control, M.A. Kaashoek, J.H. van Shuppen and A.C.M. Ran, Eds., Birkhäuser, Cambridge, MA (1990) 61-81. [Google Scholar]
  26. E.D. Sontag, Mathematical control theory, deterministic finite dimensional systems, Springer-Verlag, New York (1990). [Google Scholar]
  27. E.D. Sontag, Stability and stabilization: Discontinuities and the effect of disturbances, in Proc. NATO Advanced Study Institute - Nonlinear Analysis, Differential Equations, and Control (Montreal, Jul/Aug 1998), F.H. Clarke and R.J. Stern, Eds., Kluwer (1999) 551-598. [Google Scholar]
  28. H.J. Sussmann, Subanalytic sets and feedback control. J. Differential Equations 31 (1979) 31-52. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.