Free Access
Volume 4, 1999
Page(s) 537 - 557
Published online 15 August 2002
  1. F. Albertini and Sontag E.D., Continuous control-Lyapunov functions for asymptotically controllable time-varying systems, Internat. J. Control. to appear. (See also Control-Lyapunov functions for time-varying set stabilization, Proc. European Control Conf., Brussels, July 1997, Paper ECC515.) [Google Scholar]
  2. Z. Artstein, Stabilization with relaxed controls. Nonl. Anal. TMA 7 (1983) 1163-1173. [Google Scholar]
  3. F.H. Clarke, Yu.S. Ledyaev, R.J. Stern and P. Wolenski, Nonsmooth Analysis and Control Theory. Springer-Verlag, New York (1998). [Google Scholar]
  4. F.H. Clarke, Yu.S. Ledyaev, E.D. Sontag and A.I. Subbotin, Asymptotic controllability implies feedback stabilization. IEEE Trans. Automat. Control 42 (1997) 1394-1407. [CrossRef] [MathSciNet] [Google Scholar]
  5. F.H. Clarke, Yu.S. Ledyaev, L. Rifford and R. Stern, Feedback stabilization and Lyapunov functions. preprint, Univ. de Lyon (1999). [Google Scholar]
  6. J.-M. Coron and L. Rosier, A relation between continuous time-varying and discontinuous feedback stabilization. J. Math. Systems, Estimation, and Control 4 (1994) 67-84. [Google Scholar]
  7. J. Kurzweil, On the inversion of Ljapunov's second theorem on stability of motion. Amer. Math. Society Translations, Series 2 24 (1956) 19-77. [Google Scholar]
  8. Yu.S. Ledyaev and E.D. Sontag, A remark on robust stabilization of general asymptotically controllable systems, in Proc. Conf. on Information Sciences and Systems (CISS 97), John Hopkins University, Baltimore (1997) 246-251. [Google Scholar]
  9. Yu.S. Ledyaev and E.D. Sontag, A Lyapunov characterization of robust stabilization. J. Nonl. Anal. 37 (1999) 813-840. [CrossRef] [MathSciNet] [Google Scholar]
  10. Y. Lin, E.D. Sontag and Y. Wang, A smooth converse Lyapunov theorem for robust stability, SIAM J. Control Optim. 34 (1996) 124-160. [CrossRef] [MathSciNet] [Google Scholar]
  11. E.P. Ryan, On Brockett's condition for smooth stabilizability and its necessity in a context of nonsmooth feedback. SIAM J. Control Optim. 32 (1994) 1597-1604. [CrossRef] [MathSciNet] [Google Scholar]
  12. E.D. Sontag A Lyapunov-like characterization of asymptotic controllability. SIAM J. Control Optim. 21 (1983) 462-471. [Google Scholar]
  13. E.D. Sontag, Mathematical Control Theory, Deterministic Finite Dimensional Systems, Second Edition. Springer-Verlag, New York (1998). [Google Scholar]
  14. E.D. Sontag, Stability and stabilization: Discontinuities and the effect of disturbances, in Nonlinear Analysis, Differential Equations, and Control, Proc. NATO Advanced Study Institute, Montreal, Jul/Aug 1998; F.H. Clarke and R.J. Stern, Eds., Kluwer, Dordrecht (1999) 551-598. See also Nonlinear Control Abstracts #NCA-8-2-981026, Oct 1998. [Google Scholar]
  15. E.D. Sontag and H.J. Sussmann, Nonsmooth Control Lyapunov Functions, in Proc. IEEE Conf. Decision and Control, New Orleans, IEEE Publications (1995) 2799-2805. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.