Free Access
Issue
ESAIM: COCV
Volume 4, 1999
Page(s) 559 - 575
DOI https://doi.org/10.1051/cocv:1999122
Published online 15 August 2002
  1. T. Aubin, Problèmes isopérimétriques et espaces de Sobolev. J. Differential Geom. 11 (1976) 573-598. [Google Scholar]
  2. T. Aubin, Nonlinear Analysis on Manifolds. Monge-Ampere equations, Springer-Verlag (1982) (Grundlehren) 252. [Google Scholar]
  3. O. Druet, Generalized scalar curvature type equations on compact riemaniann manifolds. Preprint of the University of Cergy-Pontoise (1997). [Google Scholar]
  4. F. Demengel and E. Hebey, On some nonlinear equations involving the p-Laplacian with critical Sobolev growth. Adv. in PDE's, to appear. [Google Scholar]
  5. P. Courilleau and F. Demengel, On the heat flow for p-harmonic maps with values in S1. Nonlinear Anal. TMA, accepted. [Google Scholar]
  6. M. Guedda and L. Veron, Local and global properties of solutions of quasilinear elliptic equations. J. Differential Equations 76 (1988) 159-189. [CrossRef] [MathSciNet] [Google Scholar]
  7. M. Guedda and L. Veron, Quasilinear elliptic equations involving critical Sobolev exponents. Nonlinear Analysis, Theory, Methods and Applications 13 (1989) 879-902. [Google Scholar]
  8. E. Hebey and M. Vaugon, Existence and multiplicity of nodal solutions for nonlinear elliptic equations with critical Sobolev growth. J. Funct. Anal. 119 (1994) 298-318. [CrossRef] [MathSciNet] [Google Scholar]
  9. L.C. Evans, Weak convergence methods for nonlinear partial differential equations. Conference Board of the Mathematical Sciences 74 (1990). [Google Scholar]
  10. E. Hebey, La méthode d'isométries-concentration dans le cas d'un problème non linéaire sur les variétés compactes à bord avec exposant critique de sobolev. Bull. Sci. Math. 116 (1992) 35-51. [MathSciNet] [Google Scholar]
  11. E. Hebey, Sobolev Spaces on Riemannian Manifolds, Springer-Verlag (1996) (LNM) 1635. [Google Scholar]
  12. A. Jourdain, Solutions nodales pour des equations de type courbure scalaire sur la sphère. Preprint of the University of Cergy-Pontoise (1997). [Google Scholar]
  13. P.L. Lions, The concentration-compactness principle in the calculus of variations. The limit case, part I. Revista Matematica Iberoamericana 1 (1985) 145-199. [MathSciNet] [Google Scholar]
  14. P.L. Lions, The concentration-compactness principle in the calculus of variations. The limit case, part II. Revista Matematica Iberoamericana 1 (1985) 45-116. [Google Scholar]
  15. B. Nazaret, Stabilité sous des perturbations visqueuses des solutions d'équations du type p-Laplacien avec exposant critique de Sobolev. Preprint of the University of Cergy-Pontoise (5/98). [Google Scholar]
  16. G. Talenti. Best constants in Sobolev inequalities. Ann. Mat. Pura Appl. 110 (1976) 353-372. [Google Scholar]
  17. P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations. J. Differential Equations 51 (1984) 126-150. [CrossRef] [MathSciNet] [Google Scholar]
  18. J.L. Vazquez, A strong maximum principle for some quasilinear elliptic equations. Appl. Math. Optim. 12 (1984) 191-202. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.