Free Access
Volume 4, 1999
Page(s) 159 - 176
Published online 15 August 2002
  1. M. Bardi and I. Capuzzo Dolcetta, Viscosity solutions of Bellman equation and optimal deterministic control theory. Birkhäuser, Boston (1997). [Google Scholar]
  2. M. Bardi and M. Falcone, An approximation scheme for the minimum time function. SIAM J. Control Optim. 28 (1990) 950-965. [CrossRef] [MathSciNet] [Google Scholar]
  3. G. Barles, Deterministic Impulse control problems. SIAM J. Control Optim. 23 (1985) 419-432. [CrossRef] [MathSciNet] [Google Scholar]
  4. G. Barles and P. Souganidis, Convergence of approximation scheme for fully nonlinear second order equations. Asymptotic Anal. 4 (1991) 271-283. [MathSciNet] [Google Scholar]
  5. E. Barron, R. Jensen and J.L. Menaldi, Optimal control and differential games with measures. Nonlinear Anal. TMA 21 (1993) 241-268. [Google Scholar]
  6. A. Bensoussan and J.L. Lions, Impulse control and quasi-variational inequalities. Gauthier-Villars, Paris (1984). [Google Scholar]
  7. Aldo Bressan, Hyperimpulsive motions and controllizable coordinates for Lagrangean systems. Atti Accad. Naz. Lincei, Mem Cl. Sc. Fis. Mat. Natur. 19 (1991). [Google Scholar]
  8. A. Bressan and F. Rampazzo, Impulsive control systems with commutative vector fields. J. Optim. Th. & Appl. 71 (1991) 67-83. [Google Scholar]
  9. F. Camilli and M. Falcone, Approximation of optimal control problems with state constraints: estimates and applications, in Nonsmooth analysis and geometric methods in deterministic optimal control (Minneapolis, MN, 1993) Springer, New York (1996) 23-57. [Google Scholar]
  10. I. Capuzzo Dolcetta and M. Falcone, Discrete dynamic programming and viscosity solutions of the Bellman equation. Ann. Inst. H.Poincaré Anal. Nonlin. 6 (1989) 161-184. [Google Scholar]
  11. I. Capuzzo Dolcetta and H. Ishii, Approximate solutions of Bellman equation of deterministic control theory. Appl. Math. Optim. 11 (1984) 161-181. [CrossRef] [MathSciNet] [Google Scholar]
  12. M.G. Crandall, L.C. Evans and P.L. Lions, Some properties of viscosity solutions of Hamilton-Jacobi equation. Trans. Amer. Math. Soc. 282 (1984) 487-502. [CrossRef] [MathSciNet] [Google Scholar]
  13. C.W. Clark, F.H. Clarke and G.R. Munro, The optimal exploitation of renewable resource stocks. Econometrica 48 (1979) 25-47. [CrossRef] [Google Scholar]
  14. J.R. Dorroh and G. Ferreyra, Optimal advertising in exponentially decaying markets. J. Optim. Th. & Appl. 79 (1993) 219-236. [CrossRef] [Google Scholar]
  15. _____, A multistate multicontrol problem with unbounded controls. SIAM J. Control Optim. 32 (1994) 1322-1331. [CrossRef] [MathSciNet] [Google Scholar]
  16. M. Falcone, A numerical approach to the infinite horizon problem. Appl. Math. & Optim. 15 (1987) 1-13 and 23 (1991) 213-214. [Google Scholar]
  17. M. Falcone, Numerical solution of Dynamic Programming equations, Appendix to M. Bardi and I. Capuzzo Dolcetta, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations. Birkhäuser, Boston (1997). [Google Scholar]
  18. W. Fleming and H.M. Soner, Controlled Markov processes and viscosity solutions. Springer-Verlag (1992). [Google Scholar]
  19. H. Kushner and P. Dupuis, Numerical methods for stochastic control problems in continuous time. Springer-Verlag (1992). [Google Scholar]
  20. J.P. Marec, Optimal space trajectories. Elsevier (1979). [Google Scholar]
  21. B.M. Miller, Generalized solutions of nonlinear optimization problems with impulse control I, II. Automat. Remote Control 55 (1995). [Google Scholar]
  22. , Dynamic programming for nonlinear systems driven by ordinary and impulsive controls. SIAM J. Control Optim. 34 (1996) 199-225. [CrossRef] [MathSciNet] [Google Scholar]
  23. M. Motta and F. Rampazzo, Space-time trajectories of nonlinear system driven by ordinary and impulsive controls. Differential and Integral Equations 8 (1995) 269-288. [MathSciNet] [Google Scholar]
  24. F. Rampazzo, On the Riemannian Structure of a Lagrangian system and the problem of adding time-dependent constraints as controls. Eur. J. Mech. A/Solids 10 (1991) 405-431. [Google Scholar]
  25. E. Rouy, Numerical approximation of viscosity solutions of first-order Hamilton-Jacobi equations with Neumann type boundary conditions. Math. Meth. Appl. Sci. 2 (1992) 357-374. [CrossRef] [Google Scholar]
  26. P. Souganidis, Approximation schemes for viscosity solutions of Hamilton-Jacobi equations. J. Diff. Eq. 57 1-43. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.