Free Access
Issue
ESAIM: COCV
Volume 4, 1999
Page(s) 137 - 158
DOI https://doi.org/10.1051/cocv:1999107
Published online 15 August 2002
  1. R. Bryant, S. Chern, R. Gardner, H. Goldschmidt and P. Griffiths, Exterior Differential Systems, MSRI Publications 18, Springer-Verlag, New York (1991). [Google Scholar]
  2. E. Cartan, Les systèmes de Pfaff à cinq variables et les équations aux dérivées partielles du second ordre. Ann. Ec. Norm., XXVII. 3 (1910) 109-192. [Google Scholar]
  3. M. Gaspar, Sobre la clasificacion de sistemas de Pfaff en bandera, in: Proceedings of 10th Spanish-Portuguese Conference on Math., Univ. of Murcia (1985) 67-74 (in Spanish). [Google Scholar]
  4. M. Gaspar, A. Kumpera and C. Ruiz, Sur les systèmes de Pfaff en drapeau. An. Acad. Brasil. Cienc. 55 (1983) 225-229. [MathSciNet] [Google Scholar]
  5. A. Giaro, A. Kumpera and C. Ruiz, Sur la lecture correcte d'un résultat d'Elie Cartan. C. R. Acad. Sci. Paris 287 (1978) 241-244. [Google Scholar]
  6. F. Jean, The car with N trailers: characterisation of the singular configurations. ESAIM: Contr. Optim. Cal. Var. (URL: http://www.emath.fr/cocv/) 1 (1996) 241-266. [CrossRef] [EDP Sciences] [Google Scholar]
  7. A. Kumpera and C. Ruiz, Sur l'équivalence locale des systèmes de Pfaff en drapeau, in: Monge -Ampère Equations and Related Topics, Inst. Alta Math., Rome (1982) 201-248. [Google Scholar]
  8. J.- P. Laumond, Controllability of a multibody mobile robot. in: Proc. of the International Conference on Advanced Robotics and Automation, Pisa (1991) 1033-1038. [Google Scholar]
  9. J.- P. Laumond and T. Simeon, Motion planning for a two degrees of freedom mobile robot with towing, LAAS/CNRS Report 89 148, Toulouse (1989). [Google Scholar]
  10. P. Mormul, Local models of 2-distributions in 5 dimensions everywhere fulfilling the Goursat condition (preprint Rouen, 1994). [Google Scholar]
  11. P. Mormul, Local classification of rank -2 distributions satisfying the Goursat condition in dimension 9, preprint 582, Inst. of Math., Polish Acad. Sci., Warsaw, January (1998). [Google Scholar]
  12. R. Murray, Nilpotent bases for a class of nonintegrable distributions with applications to trajectory generation for nonholonomic systems. Math. Control Signals Systems 7 (1994) 58-75. [CrossRef] [MathSciNet] [Google Scholar]
  13. M. Zhitomirskii, Normal forms of germs of distributions with a fixed segment of growth vector (English translation). Leningrad Math. J. 2 (1991) 1043-1065. [MathSciNet] [Google Scholar]
  14. M. Zhitomirskii, Singularities and normal forms of smooth distributions, in: Geometry in Nonlinear Control and Differential Inclusions, Banach Center Publications, Vol. 32, Warsaw (1995) 395-409. [Google Scholar]
  15. M. Zhitomirskii, Rigid and abnormal line subdistributions of 2-distributions. J. Dyn. Control Systems 1 (1995) 253-294. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.