Free Access
Issue
ESAIM: COCV
Volume 4, 1999
Page(s) 137 - 158
DOI https://doi.org/10.1051/cocv:1999107
Published online 15 August 2002
  1. R. Bryant, S. Chern, R. Gardner, H. Goldschmidt and P. Griffiths, Exterior Differential Systems, MSRI Publications 18, Springer-Verlag, New York (1991).
  2. E. Cartan, Les systèmes de Pfaff à cinq variables et les équations aux dérivées partielles du second ordre. Ann. Ec. Norm., XXVII. 3 (1910) 109-192.
  3. M. Gaspar, Sobre la clasificacion de sistemas de Pfaff en bandera, in: Proceedings of 10th Spanish-Portuguese Conference on Math., Univ. of Murcia (1985) 67-74 (in Spanish).
  4. M. Gaspar, A. Kumpera and C. Ruiz, Sur les systèmes de Pfaff en drapeau. An. Acad. Brasil. Cienc. 55 (1983) 225-229. [MathSciNet]
  5. A. Giaro, A. Kumpera and C. Ruiz, Sur la lecture correcte d'un résultat d'Elie Cartan. C. R. Acad. Sci. Paris 287 (1978) 241-244.
  6. F. Jean, The car with N trailers: characterisation of the singular configurations. ESAIM: Contr. Optim. Cal. Var. (URL: http://www.emath.fr/cocv/) 1 (1996) 241-266. [CrossRef] [EDP Sciences]
  7. A. Kumpera and C. Ruiz, Sur l'équivalence locale des systèmes de Pfaff en drapeau, in: Monge -Ampère Equations and Related Topics, Inst. Alta Math., Rome (1982) 201-248.
  8. J.- P. Laumond, Controllability of a multibody mobile robot. in: Proc. of the International Conference on Advanced Robotics and Automation, Pisa (1991) 1033-1038.
  9. J.- P. Laumond and T. Simeon, Motion planning for a two degrees of freedom mobile robot with towing, LAAS/CNRS Report 89 148, Toulouse (1989).
  10. P. Mormul, Local models of 2-distributions in 5 dimensions everywhere fulfilling the Goursat condition (preprint Rouen, 1994).
  11. P. Mormul, Local classification of rank -2 distributions satisfying the Goursat condition in dimension 9, preprint 582, Inst. of Math., Polish Acad. Sci., Warsaw, January (1998).
  12. R. Murray, Nilpotent bases for a class of nonintegrable distributions with applications to trajectory generation for nonholonomic systems. Math. Control Signals Systems 7 (1994) 58-75. [CrossRef] [MathSciNet]
  13. M. Zhitomirskii, Normal forms of germs of distributions with a fixed segment of growth vector (English translation). Leningrad Math. J. 2 (1991) 1043-1065. [MathSciNet]
  14. M. Zhitomirskii, Singularities and normal forms of smooth distributions, in: Geometry in Nonlinear Control and Differential Inclusions, Banach Center Publications, Vol. 32, Warsaw (1995) 395-409.
  15. M. Zhitomirskii, Rigid and abnormal line subdistributions of 2-distributions. J. Dyn. Control Systems 1 (1995) 253-294. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.