Free Access
Issue |
ESAIM: COCV
Volume 5, 2000
|
|
---|---|---|
Page(s) | 45 - 70 | |
DOI | https://doi.org/10.1051/cocv:2000101 | |
Published online | 15 August 2002 |
- D.R. Adams, S. Lenhart and J. Yong, Optimal control of variational inequalities. Appl. Math. Optim. 38 (1998) 121-140. [CrossRef] [MathSciNet] [Google Scholar]
- V. Barbu, Optimal control of variational inequalities. Pitman, Boston, Res. Notes Math. 100 (1984). [Google Scholar]
- M. Bergounioux, Optimal control of an obstacle problem. Appl. Math. Optim. 36 (1997) 147-172. [MathSciNet] [Google Scholar]
- M. Bergounioux, Optimal control of problems governed by abstract variational inequalities with state constraints. SIAM J. Control Optim. 36 (1998) 273-289. [CrossRef] [MathSciNet] [Google Scholar]
- M. Bergounioux, Augmented lagrangian method for distributed optimal control problems with state constraints. J. Optim. Theory Appl. 78 (1993) 493-521. [CrossRef] [MathSciNet] [Google Scholar]
- M. Bergounioux and H. Dietrich, Optimal control of problems governed by obstacle type variational inequalities: A dual regularization-penalization approach. J. Convex Anal. 5 (1998) 329-351. [MathSciNet] [Google Scholar]
- M. Bergounioux, M. Haddou, M. Hintermueller and K. Kunisch, A comparison of interior point methods and a Moreau-Yosida based active set strategy for constrained optimal control problems. Report 98-15 Université d'Orléans (1998). [Google Scholar]
- M. Bergounioux and H. Zidani, Pontryagin principle for problems governed by parabolic variational inequalities. SIAM J. Control Optim. 37 (1999) 1273-1290. [CrossRef] [MathSciNet] [Google Scholar]
- A. Bermudez and C. Saguez, Optimal control of variational inequalities. Optimality conditions and numerical methods. Collection Free Boundary Problems, Application and Theory, Vol. IV. Maubusson, Res. Notes Math. 121 (1984) 478-487. [Google Scholar]
- A. Bermudez and C. Saguez, Optimal control of a Signorini Problem. SIAM J. Control Optim. 25 (1987) 576-582. [CrossRef] [MathSciNet] [Google Scholar]
- P.G. Ciarlet and P.A. Raviart, Maximum principle and uniform convergence for the finite element method. Comput. Methods Appl. Mech. Engrg. 2 (1973) 17-31. [CrossRef] [MathSciNet] [Google Scholar]
- W. Hackbusch, Elliptic Differential Equations, Theory and Numerical Treatment. Springer Verlag, Berlin, Ser. Comput. Math. 18 (1992). [Google Scholar]
- K. Ito and K. Kunisch, An augmented Lagrangian technics for variational inequalities. Appl. Math. Optim. 21 (1990) 223-241. [CrossRef] [MathSciNet] [Google Scholar]
- K. Ito and K. Kunisch, Optimal control of elliptic variational inequalities, to appear. [Google Scholar]
- S. Kurcyusz, On the existence and nonexistence of Lagrange multipliers in Banach spaces. J. Optim. Theory Appl. 5 (1976) 81-110. [CrossRef] [Google Scholar]
- F. Mignot, Contrôle dans les inéquations variationnelles elliptiques. J. Funct. Anal. 22 (1976) 130-185. [CrossRef] [Google Scholar]
- F. Mignot and J.P. Puel, Optimal control in some variational inequalities. SIAM J. Control Optim. 22 (1984) 466-476. [CrossRef] [MathSciNet] [Google Scholar]
- F. Mignot and J.P. Puel, Contrôle optimal d'un système gouverné par une inéquation variationnelle parabolique. C. R. Acad. Sci. Paris Sér. I Math. 298 (1984) 277-280. [Google Scholar]
- D. Tiba and F. Tröltzsch, Error estimates for the discretization of state constrained convex control problems. Num. Funct. Anal. Optim. 17 (1996) 1005-1028. [CrossRef] [Google Scholar]
- L. Wenbin and J.E. Rubio, Optimality conditions for strongly monotone variational inequalities. Appl. Math. Optim. 27 (1993) 291-312. [CrossRef] [MathSciNet] [Google Scholar]
- J. Zowe and S. Kurcyusz, Regularity and stability for the mathematical programming problem in Banach spaces. Appl. Math. Optim. 5 (1979) 49-62. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.