Free Access
Issue
ESAIM: COCV
Volume 5, 2000
Page(s) 501 - 528
DOI https://doi.org/10.1051/cocv:2000119
Published online 15 August 2002
  1. R. Adams, Sobolev Spaces. Academic Press (1975). [Google Scholar]
  2. J. Albert, Concentration-Compactness and stability-wave solutions to nonlocal equations. Contemp. Math. 221, AMS (1999) 1-30. [Google Scholar]
  3. J. Albert, J. Bona and D. Henry, Sufficient conditions for stability of solitary-wave solutions of model equations for long waves. Phys. D 24 (1987) 343-366. [CrossRef] [MathSciNet] [Google Scholar]
  4. J. Albert, J. Bona and J.C. Saut, Model equations for waves in stratified fluids. Proc. Roy. Soc. London Ser. A 453 (1997) 1233-1260. [CrossRef] [MathSciNet] [Google Scholar]
  5. J. Bergh and J. Lofstrom, Interpolation Spaces. Springer-Verlag, New-York/Berlin (1976). [Google Scholar]
  6. P. Blanchard and E. Bruning, Variational Methods in Mathematical Physics. Springer-Verlag (1992). [Google Scholar]
  7. H. Brezis and E. Lieb, Minimum Action Solutions of Some Vector Field Equations. Comm. Math. Phys. 96 (1984) 97-113. [CrossRef] [MathSciNet] [Google Scholar]
  8. A. de Bouard, Stability and instability of some nonlinear dispersive solitary waves in higher dimension. Proc. Roy. Soc. Edinburgh Sect. A 126 (1996) 89-112. [MathSciNet] [Google Scholar]
  9. I. Catto and P.L. Lions, Binding of atoms and stability of molecules in Hartree and Thomas-Fermi type theories, Part I. Comm. Partial Differential Equations 17 (1992) 1051-1110. [CrossRef] [MathSciNet] [Google Scholar]
  10. T. Cazenave and P.L. Lions, Orbital Stability of Standing waves for Some Nonlinear Schrödinger Equations. Comm. Math. Phys. 85 (1982) 549-561. [CrossRef] [MathSciNet] [Google Scholar]
  11. S. Coleman, V. Glazer and A. Martin, Action Minima among to a class of Euclidean Scalar Field Equations. Comm. Math. Phys. 58 (1978) 211-221. [CrossRef] [MathSciNet] [Google Scholar]
  12. T. Colin and M. Weinstein, On the ground states of vector nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Phys. Théor. 65 (1996) 57-79. [MathSciNet] [Google Scholar]
  13. G.H. Derrick, Comments on Nonlinear Wave Equations as Models for Elementary Particles. J. Math. Phys. 5, 9 (1964) 1252-1254. [Google Scholar]
  14. M. Grillakis, J. Shatah and W. Strauss, Stability of Solitary Waves in the Presence of Symmetry I. J. Funct. Anal. 74 (1987) 160-197. [CrossRef] [MathSciNet] [Google Scholar]
  15. L. Hormander, Estimates for translation invariant operators in Lp spaces. Acta Math. 104 (1960) 93-140. [CrossRef] [MathSciNet] [Google Scholar]
  16. O. Kavian, Introduction à la théorie des points critiques et applications aux problèmes elliptiques. Springer, Heidelberg (1993). [Google Scholar]
  17. P. Lax, Integrals of nonlinear equations of evolution and solitary waves. Comm. Pure Appl. Math. 21 (1968) 467-490. [CrossRef] [MathSciNet] [Google Scholar]
  18. S. Levandosky, Stability and instability of fourth-order solitary waves. J. Dynam. Differential Equations 10 (1998) 151-188. [CrossRef] [MathSciNet] [Google Scholar]
  19. E. Lieb, Existence and uniqueness of minimizing solutions of Choquard's nonlinear equation. Stud. Appl. Math. 57 (1977) 93-105. [Google Scholar]
  20. P.L. Lions, The Concentration-Compactness Principle in the Calculus of Variations. Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984) Part I 109-145, Part II 223-283. [Google Scholar]
  21. P.L. Lions, Solutions of Hartree-Fock Equations for Coulomb Systems. Comm. Math. Phys. 109 (1987) 33-97. [CrossRef] [MathSciNet] [Google Scholar]
  22. O. Lopes, Radial symmetry of minimizers for some translation and rotation invariant functionals. J. Differential Equations 124 (1996) 378-388. [CrossRef] [MathSciNet] [Google Scholar]
  23. O. Lopes, Sufficient conditions for minima of some translation invariant functionals. Differential Integral Equations 10 (1997) 231-244. [MathSciNet] [Google Scholar]
  24. O. Lopes, A Constrained Minimization Problem with Integrals on the Entire Space. Bol. Soc. Brasil Mat. (N.S.) 25 (1994) 77-92. [CrossRef] [MathSciNet] [Google Scholar]
  25. O. Lopes, Variational Systems Defined by Improper Integrals, edited by L. Magalhaes et al., International Conference on Differential Equations. World Scientific (1998) 137-153. [Google Scholar]
  26. O. Lopes, Variational problems defined by integrals on the entire space and periodic coefficients. Comm. Appl. Nonlinear Anal. 5 (1998) 87-120. [Google Scholar]
  27. J. Maddocks and R. Sachs, On the stability of KdV multi-solitons. Comm. Pure. Appl. Math. 46 (1993) 867-902. [CrossRef] [MathSciNet] [Google Scholar]
  28. J.C. Saut, Sur quelques généralizations de l'équation de Korteweg-de Vries. J. Math. Pure Appl. (9) 58 (1979) 21-61. [Google Scholar]
  29. H. Triebel, Interpolation Theory, Functions Spaces, Differential Operators. North-Holland, Amsterdam (1978). [Google Scholar]
  30. M. Weinstein, Liapunov Stability of Ground States of Nonlinear Dispersive Evolution Equations. Comm. Pure Appl. Math. 39 (1986) 51-68. [CrossRef] [MathSciNet] [Google Scholar]
  31. M. Weinstein, Existence and dynamic stability of solitary wave solution of equations arising in long wave propagation. Comm. Partial Differential Equations 12 (1987) 1133-1173. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.