Free Access
Issue
ESAIM: COCV
Volume 6, 2001
Page(s) 1 - 19
DOI https://doi.org/10.1051/cocv:2001101
Published online 15 August 2002
  1. E.M. Alfsen, Compact Convex Sets and Boundary Integrals. Springer-Verlag (1971). [Google Scholar]
  2. E. Acerbi and N. Fusco, Semicontinuity problems in the calculus of variations. Arch. Rational Mech. Anal. 86 (1984) 125-145. [CrossRef] [MathSciNet] [Google Scholar]
  3. H. Berliocchi and J.M. Lasry, Intégrandes normales et mesures paramétrées en calcul des variations. Bull. Soc. Math. France 101 (1973) 129-184. [MathSciNet] [Google Scholar]
  4. J.M. Ball, Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal. 63 (1977) 337-403. [Google Scholar]
  5. J.M. Ball, A version of the fundamental theorem of Young measures, in Partial Differential Equations and Continuum Models of Phase Transitions, edited by M. Rascle, D. Serre and M. Slemrod. Springer-Verlag (1989) 207-215. [Google Scholar]
  6. J.M. Ball, Sets of gradients with no rank-one connections. J. Math. Pures Appl. 69 (1990) 241-259. [MathSciNet] [Google Scholar]
  7. K. Bhattacharya, N.B. Firoozye, R.D. James and R.V. Kohn, Restrictions on Microstructures. Proc. Roy. Soc. Edinburgh Sect. A 124 (1994) 843-878. [MathSciNet] [Google Scholar]
  8. J.M. Ball and R.D. James, Fine phase mixtures as minimizers of energy. Arch. Rational Mech. Anal. 100 (1987) 13-52. [Google Scholar]
  9. J.M. Ball and R.D. James, Proposed experimental tests of a theory of fine microstructures and the two-well problem. Philos. Trans. Roy. Soc. London Ser. A 338 (1992) 389-450. [Google Scholar]
  10. J.M. Ball and K.-W. Zhang, Lower semicontinuity and multiple integrals and the biting lemma. Proc. Roy. Soc. Edinburgh Sect. A 114 (1990) 367-379. [MathSciNet] [Google Scholar]
  11. M. Chipot and D. Kinderlehrer, Equilibrium configurations of crystals. Arch. Rational Mech. Anal. 103 (1988) 237-277. [MathSciNet] [Google Scholar]
  12. B. Dacorogna, Direct Methods in the Calculus of Variations. Springer-Verlag (1989). [Google Scholar]
  13. B. Dacorogna and P. Marcellini, Théorème d'existence dans le cas scalaire et vectoriel pour les équations de Hamilton-Jacobi. C. R. Acad. Sci. Paris Sér. I Math. 322 (1996) 237-240. [Google Scholar]
  14. B. Dacorogna and P. Marcellini, Sur le problème de Cauchy-Dirichlet pour les systèmes d'équations non linéaires du premier ordre. C. R. Acad. Sci. Paris Sér. I Math. 323 (1996) 599-602. [Google Scholar]
  15. B. Dacorogna and P. Marcellini, General existence theorems for Hamilton-Jacobi equations in the scalar and vectorial case. Acta Math. 178 (1997) 1-37. [CrossRef] [MathSciNet] [Google Scholar]
  16. B. Dacorogna and P. Marcellini, Cauchy-Dirichlet problem for first order nonlinear systems. J. Funct. Anal. 152 (1998) 404-446. [CrossRef] [MathSciNet] [Google Scholar]
  17. B. Dacorogna and P. Marcellini, Implicit second order partial differential equations. Ann. Scuola. Norm. Sup. Pisa Cl. Sci. (4) 25 (1997) 299-328. [MathSciNet] [Google Scholar]
  18. J.L. Kelly, General Topology. van Nostrand (1955). [Google Scholar]
  19. D. Kinderlehrer and P. Pedregal, Characterizations of Young measures generated by gradients. Arch. Rational Mech. Anal 115 (1991) 329-365. [Google Scholar]
  20. R.V. Kohn, The relaxation of a double well energy. Cont. Mech. Therm. 3 (1991) 981-1000. [Google Scholar]
  21. S.R. Lay, Convex Sets and Their Applications. John Wiley & Sons (1982). [Google Scholar]
  22. C.B. Morrey Jr., Multiple integrals in the calculus of variations. Springer (1966). [Google Scholar]
  23. S. Müller and V. Sverák, Attainment results for the two-well problem by convex integration. Preprint (1993). [Google Scholar]
  24. Yu.G. Reshetnak, Liouville's theorem on conformal mappings under minimal regularity assumptions. Siberian Math. J. 8 (1967) 631-653. [Google Scholar]
  25. R.T. Rockafellar, Convex Analysis. Princeton University Press (1970). [Google Scholar]
  26. W. Rudin, Functional Analysis. McGraw-Hill (1973). [Google Scholar]
  27. V. Sverák, On regularity for the Monge-Ampère equations. Preprint. [Google Scholar]
  28. V. Sverák, New examples of quasiconvex functions. Arch. Rational Mech. Anal. 119 (1992) 293-330. [CrossRef] [MathSciNet] [Google Scholar]
  29. V. Sverák, On the problem of two wells, in Microstructure and phase transitions, edited by D. Kinderlehrer, R.D. James, M. Luskin and J. Ericksen. Springer, IMA J. Appl. Math. 54 (1993) 183-189. [Google Scholar]
  30. V. Sverák, On Tartar's conjecture. Ann. Inst. H. Poincaré 10 (1993) 405-412. [Google Scholar]
  31. L. Tartar, Compensated compactness and applications to partial differential equations, in Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, IV, edited by R.J. Knops. Pitman (1979). [Google Scholar]
  32. K.-W. Zhang, A construction of quasiconvex functions with linear growth at infinity. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) XIX (1992) 313-326. [Google Scholar]
  33. K.-W. Zhang, On connected subsets of Formula without rank-one connections. Proc. Roy. Soc. Edinburgh Sect. A 127 (1997) 207-216. [MathSciNet] [Google Scholar]
  34. K.-W. Zhang, On various semiconvex hulls in the calculus of variations. Calc. Var. Partial Differential Equations 6 (1998) 143-160. [CrossRef] [MathSciNet] [Google Scholar]
  35. K.-W. Zhang, On the structure of quasiconvex hulls. Ann. Inst. H. Poincaré Anal. Non Linéaire 15 (1998) 663-686. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.