Free Access
Volume 6, 2001
Page(s) 499 - 516
Published online 15 August 2002
  1. A. Agrachev and R. Gamkrelidze, The exponential representation of flows and the chronological calculus. Math. USSR Sbornik 35 (1978) 727-785. [CrossRef] [Google Scholar]
  2. A. Bacciotti and G. Stefani, Self-accessibility of a set with respect to a multivalued field. JOTA 31 (1980) 535-552. [CrossRef] [Google Scholar]
  3. R. Bianchini and G. Stefani, Time optimal problem and time optimal map. Rend. Sem. Mat. Univ. Politec. Torino 48 (1990) 401-429. [MathSciNet] [Google Scholar]
  4. J.M. Bony, Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés. Ann. Inst. Fourier (Grenoble) 19 (1969) 277-304. [CrossRef] [MathSciNet] [Google Scholar]
  5. P. Brunovsky, Local controllability of odd systems. Banach Center Publications,Warsaw, Poland 1 (1974) 39-45. [Google Scholar]
  6. P. Cardaliaguet, M. Quincampoix and P. Saint Pierre, Minimal time for constrained nonlinear control problems without controllability. Appl. Math. Optim. 36 (1997) 21-42. [MathSciNet] [Google Scholar]
  7. K. Chen, Integration of paths, geometric invariants and a generalized Baker-Hausdorff formula. Ann. Math. 65 (1957) 163-178. [CrossRef] [MathSciNet] [Google Scholar]
  8. F.H. Clarke and P.R. Wolenski, Control of systems to sets and their interiors. JOTA 88 (1996) 3-23. [CrossRef] [Google Scholar]
  9. M. Fliess, Fonctionnelles causales nonlinéaires et indéterminées non commutatives. Bull. Soc. Math. France 109 (1981) 3-40. [MathSciNet] [Google Scholar]
  10. H. Frankowska, Local controllability of control systems with feedback. JOTA 60 (1989) 277-296. [CrossRef] [Google Scholar]
  11. H. Hermes, Lie algebras of vector fields and local approximation of attainable sets. SIAM J. Control Optim. 16 (1978) 715-727. [CrossRef] [MathSciNet] [Google Scholar]
  12. R. Hirshorn, Strong controllability of nonlinear systems. SIAM J. Control Optim. 16 (1989) 264-275. [Google Scholar]
  13. V. Jurdjevic and I. Kupka, Polynomial Control Systems. Math. Ann. 272 (1985) 361-368. [CrossRef] [MathSciNet] [Google Scholar]
  14. A. Krener, The high order maximal principle and its applications to singular extremals. SIAM J. Control Optim. 15 (1977) 256-293. [CrossRef] [Google Scholar]
  15. H. Kunita, On the controllability of nonlinear systems with application to polynomial systems. Appl. Math. Optim. 5 (1979) 89-99. [CrossRef] [MathSciNet] [Google Scholar]
  16. G. Lebourg, Valeur moyenne pour gradient généralisé. C. R. Acad. Sci. Paris Sér. I Math. 281 (1975) 795-797. [Google Scholar]
  17. P. Soravia, Hölder Continuity of the Minimum-Time Function for C1-Manifold Targets. JOTA 75 (1992) 2. [Google Scholar]
  18. H. Sussmann, A sufficient condition for local controllability. SIAM J. Control Optim. 16 (1978) 790-802. [CrossRef] [MathSciNet] [Google Scholar]
  19. H. Sussmann, Lie brackets and local controllability - A sufficient condition for scalar-input control systems. SIAM J. Control Optim. 21 (1983) 683-713. [Google Scholar]
  20. H. Sussmann, A general theorem on local controllability. SIAM J. Control Optim. 25 (1987) 158-194. [CrossRef] [MathSciNet] [Google Scholar]
  21. V. Veliov, On the controllability of control constrained systems. Mathematica Balkanica (N.S.) 2 (1988) 2-3, 147-155. [Google Scholar]
  22. V. Veliov and M. Krastanov, Controllability of piece-wise linear systems. Systems Control Lett. 7 (1986) 335-341. [CrossRef] [MathSciNet] [Google Scholar]
  23. V. Veliov, Attractiveness and invariance: The case of uncertain measurement, edited by Kurzhanski and Veliov, Modeling Techniques for uncertain Systems. PSCT 18, Birkhauser (1994). [Google Scholar]
  24. V. Veliov, On the Lipschitz continuity of the value function in optimal control. J. Optim. Theory Appl. 94 (1997) 335-361. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.