Free Access
Issue
ESAIM: COCV
Volume 6, 2001
Page(s) 489 - 498
DOI https://doi.org/10.1051/cocv:2001119
Published online 15 August 2002
  1. A. Braides and A. Defranceschi, Homogenization of Multiple Integrals. Oxford University Press, Oxford (1998). [Google Scholar]
  2. A. Braides and I. Fonseca, Brittle thin films, Preprint CNA-CMU. Pittsburgh (1999). [Google Scholar]
  3. A. Braides, I. Fonseca and G. Francfort, 3D-2D asymptotic analysis for inhomogeneous thin films, Preprint CNA-CMU. Pittsburgh (1999). [Google Scholar]
  4. W.F. Brown, Micromagnetics. John Wiley and Sons, New York (1963). [Google Scholar]
  5. C. Castaing and M. Valadier, Convex analysis and measurable multifunctions. Springer-Verlag, New York, Lecture Notes in Math. 580 (1977). [Google Scholar]
  6. B. Dacorogna, Direct methods in Calculus of Variations. Springer-Verlag, Berlin (1989). [Google Scholar]
  7. B. Dacorogna, I. Fonseca, J. Maly and K. Trivisa, Manifold constrained variational problems. Calc. Var. 9 (1999) 185-206. [CrossRef] [MathSciNet] [Google Scholar]
  8. G. Dal Maso, An Introduction to Γ-convergence. Birkhäuser, Boston (1993). [Google Scholar]
  9. I. Fonseca and G. Francfort, 3D-2D asymptotic analysis of an optimal design problem for thin films. J. Reine Angew. Math. 505 (1998) 173-202. [CrossRef] [MathSciNet] [Google Scholar]
  10. I. Fonseca and G. Francfort, On the inadequacy of the scaling of linear elasticity for 3D-2D asymptotic in a nonlinear setting, Preprint CNA-CMU. Pittsburgh (1999). [Google Scholar]
  11. I. Fonseca and S. Müller, Quasi-convex integrands and lower semicontinuity in L1. SIAM J. Math. Anal. 23 (1992) 1081-1098. [CrossRef] [MathSciNet] [Google Scholar]
  12. G. Gioia and R.D. James, Micromagnetics of very thin films. Proc. Roy. Soc. Lond. Ser. A 453 (1997) 213-223. [CrossRef] [Google Scholar]
  13. C.B. Morrey, Quasiconvexity and the semicontinuity of multiple integrals. Pacific J. Math. 2 (1952) 25-53. [CrossRef] [MathSciNet] [Google Scholar]
  14. C.B. Morrey, Multiple integrals in the Calculus of Variations. Springer-Verlag, Berlin (1966). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.