Free Access
Volume 6, 2001
Page(s) 539 - 552
Published online 15 August 2002
  1. F. Alvarez, On the minimizing property of a second order dissipative system in Hilbert spaces. SIAM J. Control Optim. 38 (2000) 1102-1119. [CrossRef] [MathSciNet] [Google Scholar]
  2. H. Attouch and R. Cominetti, A dynamical approach to convex minimization coupling approximation with the steepest descent method. J. Differential Equations 128 (1996) 519-540. [CrossRef] [MathSciNet] [Google Scholar]
  3. H. Attouch and M.O. Czarnecki, Asymptotic control and stabilization of nonlinear oscillators with non-isolated equilibria. J. Differential Equations (to appear). [Google Scholar]
  4. H. Attouch, X. Goudou and P. Redont, A dynamical method for the global exploration of stationary points of a real-valued mapping: The heavy ball method. Communications in Contemporary Math. 2 (2000) 1-34. [Google Scholar]
  5. B. Aulbach, Approach to hyperbolic manifolds of stationary solutions. Springer-Verlag, Lecture Notes in Math. 1017 (1983) 56-66. [CrossRef] [Google Scholar]
  6. H. Brezis, Opérateurs maximaux monotones et semigroupes de contractions dans les espaces de Hilbert. North-Holland, Amsterdam, Math. Studies 5 (1973). [Google Scholar]
  7. R.E. Bruck, Asymptotic convergence of nonlinear contraction semigroups in Hilbert space. J. Funct. Anal. 18 (1975) 15-26. [CrossRef] [MathSciNet] [Google Scholar]
  8. P. Brunovsky and P. Polacik, The Morse-Smale structure of a generic reaction-diffusion equation in higher space dimension. J. Differential Equations 135 (1997) 129-181. [CrossRef] [MathSciNet] [Google Scholar]
  9. C.V. Coffman, R.J. Duffin and D.H. Shaffer, The fundamental mode of vibration of a clamped annular plate is not of one sign, Constructive Approaches to Math. Models. Academic Press, New York-London-Toronto, Ont. (1979) 267-277. [Google Scholar]
  10. C.M. Dafermos and M. Slemrod, Asymptotic behavior of nonlinear contraction semigroups. J. Funct. Anal. 13 (1973) 97-106. [CrossRef] [Google Scholar]
  11. R. Dautray and J.-L. Lions, Analyse mathématique et calcul numérique, Vol. 8, Évolution : semi-groupe, variationnel. Masson, Paris (1988). [Google Scholar]
  12. H. Furuya, K. Miyashiba and N. Kenmochi, Asymptotic behavior of solutions to a class of nonlinear evolution equations. J. Differential Equations 62 (1986) 73-94. [CrossRef] [MathSciNet] [Google Scholar]
  13. J.M. Ghidaglia and R. Temam, Attractors for damped nonlinear hyperbolic equations. J. Math. Pures Appl. 66 (1987) 273-319. [MathSciNet] [Google Scholar]
  14. J. Hale and G. Raugel, Convergence in gradient-like systems with applications to PDE. Z. Angew. Math. Phys. 43 (1992) 63-124. [CrossRef] [MathSciNet] [Google Scholar]
  15. A. Haraux, Asymptotics for some nonlinear hyperbolic equations with a one-dimensional set of rest points. Bol. Soc. Brasil. Mat. 17 (1986) 51-65. [CrossRef] [MathSciNet] [Google Scholar]
  16. A. Haraux, Semilinear Hyperbolic Problems in Bounded Domains, Mathematical Reports 3(1). Harwood Academic Publishers, Gordon and Breach, London (1987). [Google Scholar]
  17. A. Haraux and M.A. Jendoubi, Convergence of bounded weak solutions of the wave equation with dissipation and analytic nonlinearity. Calc. Var. Partial Differential Equations 9 (1999) 95-124. [CrossRef] [MathSciNet] [Google Scholar]
  18. M.A. Jendoubi, Convergence of global and bounded solutions of the wave equation with linear dissipation and analytic nonlinearity. J. Differential Equations 144 (1998) 302-312. [CrossRef] [MathSciNet] [Google Scholar]
  19. Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Amer. Math. Soc. 73 (1967) 591-597. [CrossRef] [MathSciNet] [Google Scholar]
  20. A. Pazy, On the asymptotic behavior of semigroups of nonlinear contractions in Hilbert space. J. Funct. Anal. 27 (1978) 292-307. [CrossRef] [Google Scholar]
  21. L. Simon, Asymptotics for a class of non-linear evolution equations, with applications to geometric problems. Ann. Math. 118 (1983) 525-571. [CrossRef] [Google Scholar]
  22. R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer-Verlag, New York, Appl. Math. Sci. 68 (1988). [Google Scholar]
  23. E. Zuazua, Stability and decay for a class of nonlinear hyperbolic problems. Asymptot. Anal. 1 (1988) 161-185. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.