Free Access
Issue
ESAIM: COCV
Volume 6, 2001
Page(s) 553 - 560
DOI https://doi.org/10.1051/cocv:2001122
Published online 15 August 2002
  1. L. Amerio and G. Prouse, Abstract almost periodic functions and functional equations. Van Nostrand, New-York (1971). [Google Scholar]
  2. J.M. Ball and M. Slemrod, Feedback stabilization of distributed semilinear control systems. Appl. Math. Optim. 5 (1979) 169-179. [Google Scholar]
  3. M. Biroli, Sur les solutions bornées et presque périodiques des équations et inéquations d'évolution. Ann. Math. Pura Appl. 93 (1972) 1-79. [CrossRef] [Google Scholar]
  4. T. Cazenave and A. Haraux, Propriétés oscillatoires des solutions de certaines équations des ondes semi-linéaires. C. R. Acad. Sci. Paris Sér. I Math. 298 (1984) 449-452. [Google Scholar]
  5. T. Cazenave and A. Haraux, Oscillatory phenomena associated to semilinear wave equations in one spatial dimension. Trans. Amer. Math. Soc. 300 (1987) 207-233. [CrossRef] [MathSciNet] [Google Scholar]
  6. T. Cazenave and A. Haraux, Some oscillatory properties of the wave equation in several space dimensions. J. Funct. Anal. 76 (1988) 87-109. [CrossRef] [MathSciNet] [Google Scholar]
  7. T. Cazenave, A. Haraux and F.B. Weissler, Une équation des ondes complètement intégrable avec non-linéarité homogène de degré 3. C. R. Acad. Sci. Paris Sér. I Math. 313 (1991) 237-241. [Google Scholar]
  8. T. Cazenave, A. Haraux and F.B. Weissler, A class of nonlinear completely integrable abstract wave equations. J. Dynam. Differential Equations 5 (1993) 129-154. [CrossRef] [MathSciNet] [Google Scholar]
  9. T. Cazenave, A. Haraux and F.B. Weissler, Detailed asymptotics for a convex hamiltonian system with two degrees of freedom. J. Dynam. Differential Equations 5 (1993) 155-187. [CrossRef] [MathSciNet] [Google Scholar]
  10. F. Conrad and M. Pierre, Stabilization of second order evolution equations by unbounded nonlinear feedbacks. Ann. Inst. H. Poincaré Anal. Non Linéaire 11 (1994) 485-515. [Google Scholar]
  11. A. Haraux, Comportement à l'infini pour une équation des ondes non linéaire dissipative. C. R. Acad. Sci. Paris Sér. I Math. 287 (1978) 507-509. [Google Scholar]
  12. A. Haraux, Comportement à l'infini pour certains systèmes dissipatifs non linéaires. Proc. Roy. Soc. Edinburgh Ser. A 84 (1979) 213-234. [Google Scholar]
  13. A. Haraux, Stabilization of trajectories for some weakly damped hyperbolic equations. J. Differential Equations 59 (1985) 145-154. [CrossRef] [MathSciNet] [Google Scholar]
  14. A. Haraux and V. Komornik, Oscillations of anharmonic Fourier series and the wave equation. Rev. Mat. Iberoamericana 1 (1985) 57-77. [MathSciNet] [Google Scholar]
  15. A. Haraux, Semi-linear hyperbolic problems in bounded domains, Mathematical Reports Vol. 3, Part 1 , edited by J. Dieudonné. Harwood Academic Publishers, Gordon & Breach (1987). [Google Scholar]
  16. A. Haraux, Systèmes dynamiques dissipatifs et applications, R.M.A. 17, edited by Ph. Ciarlet and J.L. Lions. Masson, Paris (1990). [Google Scholar]
  17. A. Haraux, Strong oscillatory behavior of solutions to some second order evolution equations, Publication du Laboratoire d'Analyse Numérique 94033, 10 p. [Google Scholar]
  18. B.M. Levitan and V.V. Zhikov, Almost periodic functions and differential equations. Cambridge University Press, Cambridge (1982). [Google Scholar]
  19. M. Slemrod, Weak asymptotic decay via a relaxed invariance principle for a wave equation with nonlinear, nonmonotone damping. Proc. Roy. Soc. Edinburgh Ser. A 113 (1989) 87-97. [Google Scholar]
  20. J. Vancostenoble, Weak asymptotic stability of second order evolution equations by nonlinear and nonmonotone feedbacks. SIAM J. Math. Anal. 30 (1998) 140-154. [CrossRef] [Google Scholar]
  21. J. Vancostenoble, Weak asymptotic decay for a wave equation with weak nonmonotone damping, 17p (to appear). [Google Scholar]
  22. G.F. Webb, Compactness of trajectories of dynamical systems in infinite dimensional spaces. Proc. Roy. Soc. Edinburgh Ser. A 84 (1979) 19-34. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.