Free Access
Volume 6, 2001
Page(s) 97 - 118
Published online 15 August 2002
  1. C. Alvarez, Problemas de frontiera libre en teoría de lubrificación. Ph.D. Thesis, Complutense University of Madrid (1986). [Google Scholar]
  2. V. Barbu, Necessary conditions for nonconvex distributed control problems governed by elliptic variational inequalities. J. Math. Anal. Appl. 80 (1981) 566-598. [CrossRef] [MathSciNet] [Google Scholar]
  3. V. Barbu, Necessary conditions for distributed control problems governed by parabolic variational inequalities. SIAM. J. Control Optim. 19 (1981) 64-86. [CrossRef] [MathSciNet] [Google Scholar]
  4. G. Bayada et M. Chambat, Sur quelques modélisation de la zone de cavitation en lubrification hydrodynamique. J. Méc. Théor. Appl. 5 (1986) 703-729. [Google Scholar]
  5. G. Bayada et M. Chambat, Existence and uniqueness for a lubrification problem with non regular conditions on the free boundary. Boll. Un Math. Ital. 6 (1984) 543-547. [Google Scholar]
  6. G. Bayada et M. El Alaoui Talibi, Control by coefficients in a variational inequality: The inverse elastohydrodynamic lubrication problem. Nonlinear Analysis: Real World Applications 1 (2000) 315-328. [CrossRef] [MathSciNet] [Google Scholar]
  7. G. Bayada et M. El Alaoui Talibi, Une méthode du type caractérisitique pour la résolution d'un problème de lubrification hydrodynamique en régime transitoire. ESAIM: M2AN 25 (1991) 395-423. [Google Scholar]
  8. A. Bensoussan, J.L. Lions et G. Papanicolau, Asymptotic analysis for periodic structures. North-Holland, Amsterdam (1978). [Google Scholar]
  9. H. Brezis, Analyse fonctionnelle Théorie et Application. Masson, Paris (1983). [Google Scholar]
  10. A. Cameron, Basic Lubrication Theory. John Whiley & Sons (1981). [Google Scholar]
  11. E. Casas et F. Bonnans, An extension of pontryagin's principle for state-constrainted optimal control of semilinear elliptic equations and variational inequalities. SIAM J. Control Optim. 33 (1995) 274-298. [CrossRef] [MathSciNet] [Google Scholar]
  12. E. Casas et F. Bonnans, Optimal control of semilinear multistate systems with state constraints. SIAM J. Control Optim. 27 (1989) 446-455. [CrossRef] [MathSciNet] [Google Scholar]
  13. E. Casas, O. Kavian et J.P. Puel, Optimal control of an ill-posed elliptic semilinear equation whith an exponential non linearity. ESAIM: COCV 3 (1998) 361-380. [CrossRef] [EDP Sciences] [Google Scholar]
  14. G. Elrod H. et M.L. Adams, A computer program for cavitation, in st LEEDS LYON symposium on cavitation and related phenomena in lubrication, I.M.E. (1974). [Google Scholar]
  15. D. Gilbarg et N.S. Trudinger, Elliptic Partial Differential Equations of second Order. Springer-Verlag (1983). [Google Scholar]
  16. O.A. Ladyzhenskaya et N.N. Ural'tseva, Linear and quasilinear elliptic equations. Academic Press (1968). [Google Scholar]
  17. M.H. Meurisse, Solution of the inverse problem in hydrodynamic lubrication, in Proc. of the X Lyon Leeds International Symposium (1983) 104-107. [Google Scholar]
  18. J.F. Rodrigues, Obstacle problems in mathematical physics. North-Holland, Amsterdam (1978). [Google Scholar]
  19. G. Stampachia et D. Kinderleher, An introduction to variational inequalities and applications. Academic Press (1980). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.