Free Access
Issue
ESAIM: COCV
Volume 7, 2002
Page(s) 43 - 67
DOI https://doi.org/10.1051/cocv:2002003
Published online 15 September 2002
  1. A. Ackleh, M.A. Demetriou and S. Reich, Detection and accommodation of second order distributed parameter systems with abrupt changes in input term: Existence and approximation, in Proc. of the 6th IEEE Mediterranean Conference on Control and Systems. Alghero, Sardinia (1998). [Google Scholar]
  2. A.S. Ackleh, S. Aizicovici, M.A. Demetriou and S. Reich, Existence and uniqueness of solutions to a second order nonlinear nonlocal hyperbolic equation, in Proc. of International Workshop on Differential Equations and Optimal Control. Marcel Dekker (2001). [Google Scholar]
  3. R.A. Adams, Sobolev Spaces. Academic Press, New York (1975). [Google Scholar]
  4. N.U. Ahmed and K.L. Teo, Optimal Control of Distributed Parameter Systems. North Holland, New York (1981). [Google Scholar]
  5. A.M. Annaswamy and K.S. Narendra, Adaptive control of a first order plant with time-varying parameter, in Proc. of the 1989 American Control Conference (1989) 975-980. [Google Scholar]
  6. height 2pt depth -1.6pt width 23pt, Adaptive control of simple time-varying systems, in Proc. of the 28th IEEE Conference on Decision and Control. Tampa, Florida (1989) 1014-1018. [Google Scholar]
  7. O. Axelsson and V.A. Barker, Finite Element Solutions of Boundary Value Problems. Academic Press, Orlando, Florida (1984). [Google Scholar]
  8. M.J. Balas, Finite dimensional direct adaptive control for discrete-time infinite dimensional linear systems, in Proc. of the 33rd IEEE Conference on Decision and Control. Lake Buena Vista, FL, USA (1994) 3424-3429. [Google Scholar]
  9. H.T. Banks and M.A. Demetriou, Adaptive parameter estimation of hyperbolic distributed parameter systems: Non-symmetric damping and slowly time varying systems. ESAIM: COCV 3 (1998) 133-162. [CrossRef] [EDP Sciences] [Google Scholar]
  10. H.T. Banks and K. Kunisch, Estimation Techniques for Distributed Parameter Systems. Birkhäuser, Boston (1989). [Google Scholar]
  11. H.T. Banks, R.C. Smith and Y. Wang, Smart Material Structures: Modeling, Estimation and Control. Wiley, Masson, Paris (1996). [Google Scholar]
  12. M. Basseville and I. Nikiforov, Detection of abrupt changes: Theory and applications. Prentice Hall, Englewood Cliffs, New Jersey (1993). [Google Scholar]
  13. J. Baumeister, W. Scondo, M.A. Demetriou and I.G. Rosen, On-line parameter estimation for infinite dimensional dynamical systems. SIAM J. Control Optim. 35 (1997) 678-713. [CrossRef] [MathSciNet] [Google Scholar]
  14. A. Bensoussan, G. Da Prato, M.C. Delfour and S.K. Mitter, Representation and Control of Infinite Dimensional Systems, Vols. I, II. Birkauser, Boston-Basel-Berlin (1992). [Google Scholar]
  15. M. Böhm, M.A. Demetriou, I.G. Rosen and S. Reich, Model reference adaptive control of distributed parameter systems. SIAM J. Control Optim. 36 (1998). [Google Scholar]
  16. S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Springer-Verlag, New York (1994). [Google Scholar]
  17. C.D. Charalambous and J. Hibey, Conditional densities for continous-time nonlinear hybrid systems with applications to fault detection. IEEE Trans. Automat. Control 44 (1999) 2164-2169. [CrossRef] [MathSciNet] [Google Scholar]
  18. R.F. Curtain and J.C. Oostveen, Riccati equations for strongly stable, bounded linear systems. Automatica 34 (1998) 953-967. [CrossRef] [MathSciNet] [Google Scholar]
  19. R.F. Curtain and H.J. Zwart, An Introduction to Infinite Dimensional Linear Systems Theory. Springer-Verlag, Berlin, Texts Appl. Math. 21 (1995). [Google Scholar]
  20. M.A. Demetriou, Adaptive Parameter Estimation of Abstract Parabolic and Hyperbolic Distributed Parameter Systems, Ph.D. Thesis, Department of Electrical Engineering - Systems. University of Southern California, Los Angeles, California (1993). [Google Scholar]
  21. height 2pt depth -1.6pt width 23pt, Model reference adaptive control of slowly time-varying parabolic distributed parameter systems, in Proc. of the 33rd Conference on Decision and Control. Lake Buena Vista, Florida (1994). [Google Scholar]
  22. height 2pt depth -1.6pt width 23pt, Fault diagnosis for a parabolic distributed parameter system, in Proc. of the 13th World Congress. International Federation of Automatic Control, San Francisco, California, July (1996). [Google Scholar]
  23. M.A. Demetriou and B.G. Fitzpatrick, On line estimation of stiffness in nonlinear beam models with piezoceramic actuators, in Proc. of the 1995 ASME Fifteenth Biennial Conference on Mechanical Vibration and Noise & 1995 ASME Design Technical Conferences. Boston, Mass (1995). [Google Scholar]
  24. height 2pt depth -1.6pt width 23pt, Results on the adaptive estimation of stiffness in nonlinear beam models, in Proc. of the 3rd IEEE Mediterranean Symposium on New Directions in Control and Automation. Limassol, CYPRUS (1995). [Google Scholar]
  25. height 2pt depth -1.6pt width 23pt, An adaptive change detection scheme for a nonlinear beam model. Kybernetika 33 (1997) 103-120. [MathSciNet] [Google Scholar]
  26. M.A. Demetriou and M.M. Polycarpou, Fault accommodation of output-induced actuator failures for a flexible beam with collocated input and output, in Proc. of the 5th IEEE Mediterranean Conference on Control and Systems. Paphos, CYPRUS (1997). [Google Scholar]
  27. height 2pt depth -1.6pt width 23pt, Fault detection and diagnosis of a class of actuator failures via on-line approximators, in Proc. of the 1997 36th IEEE Conference on Decision and Control. San Diego, CA (1997). [Google Scholar]
  28. height 2pt depth -1.6pt width 23pt, Fault diagnosis of output-induced actuator failures for a flexible beam with collocated input and output, in Proc. of the IFAC Symposium on Fault Detection, Supervision and Safety for Processes (SAFEPROCESS). Hull, England (1997). [Google Scholar]
  29. height 2pt depth -1.6pt width 23pt, Fault detection, diagnosis and accommodation of dynamical systems with actuator failures via on-line approximators, in Proc. of the 1998 American Control Conference. Philadelphia, PA (1998). [Google Scholar]
  30. height 2pt depth -1.6pt width 23pt, Incipient fault diagnosis of dynamical systems using on-line approximators. IEEE Trans. Automat. Control 43 (1998) 1612-1617. [CrossRef] [MathSciNet] [Google Scholar]
  31. M.A. Demetriou and I.G. Rosen, On the persistence of excitation in the adaptive identification of distributed parameter systems. IEEE Trans. Automat. Control 39 (1994) 1117-1123. [CrossRef] [MathSciNet] [Google Scholar]
  32. height 2pt depth -1.6pt width 23pt, Robust adaptive estimation schemes for parabolic distributed parameter systems, in Proc. of the 36th Conference on Decision and Control. San Diego, California, USA (1997) 3448-3453. [Google Scholar]
  33. P.M. Frank, Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy - a survey and some new results. Automatica 26 (1990) 459-474. [CrossRef] [Google Scholar]
  34. J.J. Gertler, Survey of model-based failure detection and isolation in complex plants. IEEE Control System Magazine 8 (1988) 3-11. [CrossRef] [Google Scholar]
  35. J.J. Gertler, Fault Detection and Diagnosis in Engineering Systems. Marcel Dekker, New York (1998). [Google Scholar]
  36. M. Green and D.J. Limebeer, Linear Robust Control. Prentice Hall, Englewood Cliffs, New Jersey (1995). [Google Scholar]
  37. P.A. Ioannou and J. Sun, Robust Adaptive Control. Prentice Hall, Englewood Cliffs, NJ (1995). [Google Scholar]
  38. R. Isermann, Process fault detection based on modeling and estimation methods: A survey. Automatica 20 (1984) 387-404. [CrossRef] [Google Scholar]
  39. B.V. Keulen, Formula -Control for Distributed Parameter Systems: A State-Space Approach. Birkhäuser, Boston-Basel-Berlin (1993). [Google Scholar]
  40. T. Kobayashi, Global adaptive stabilization of infinite-dimensional systems. Systems Control Lett. 9 (1987) 215-223. [CrossRef] [MathSciNet] [Google Scholar]
  41. height 2pt depth -1.6pt width 23pt, Finite dimensional adaptive control for infinite dimensional systems. Internat. J. Control 48 (1988) 289-302. [CrossRef] [MathSciNet] [Google Scholar]
  42. height 2pt depth -1.6pt width 23pt, Input-output representations of spectral systems and adaptive controls. Internat. J. Systems Sci. 19 (1988) 713-732. [CrossRef] [MathSciNet] [Google Scholar]
  43. M. Krstic, I. Kanellakopoulos and P. Kokotovic, Nonlinear and adaptive control design. Wiley, New York (1995). [Google Scholar]
  44. J.L. Lions, Optimal Control of Systems Governed by Partial Differential Equations. Springer-Verlag, New York (1971). [Google Scholar]
  45. J.L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems, I. Springer-Verlag, New York (1972). [Google Scholar]
  46. G.P. Liu and R.J. Patton, Eigenstructure Assignment for Control System Design. John Wiley & Sons, Chichester (1998). [Google Scholar]
  47. D.G. Luenberger, An introduction to observers. IEEE Trans. Automat. Control 16 (1971) 596-602. [CrossRef] [Google Scholar]
  48. K.S. Narendra and A.M. Annaswamy, Stable Adaptive Systems. Prentice Hall, Englewood Cliffs, NJ (1989). [Google Scholar]
  49. R.J. Patton, Robust model-based fault diagnosis: The state of the art, in Proc. of the IFAC Symposium on Fault Detection, Supervision and Safety for Processes (SAFEPROCESS). Espoo, Finland (1994) 1-24. [Google Scholar]
  50. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York (1983). [Google Scholar]
  51. M.M. Polycarpou and A.J. Helmicki, Automated fault detection and accomodation: A learning systems approach. IEEE Trans. Systems Man Cybernet. 25 (1995) 1447-1458. [CrossRef] [Google Scholar]
  52. M.M. Polycarpou and P.A. Ioannou, Neural networks as on-line approximators of nonlinear systems, in Proc. of the 31st IEEE Conference on Decision and Control. San Antonio, Texas (1993) 7-12. [Google Scholar]
  53. height 2pt depth -1.6pt width 23pt, Stable nonlinear system identification using neural network models, in Neural Networks in Robotics, edited by G. Bekey and K. Goldberg. Kluwer Academic Publishers (1993) 147-164. [Google Scholar]
  54. M.M. Polycarpou and A.T. Vemuri, Learning methodology for failure detection and accomodation. Control Systems Magazine, special issue on Intelligent Learning Control 15 (1995) 16-24. [Google Scholar]
  55. V.M. Popov, Hyperstability of Control Systems. Springer-Verlag, Berlin (1973). [Google Scholar]
  56. L. Praly, G. Bastin, J.B. Pomet and Z.P. Jiang, Adaptive stabilization of nonlinear systems, in Foundations of Adaptive Control, edited by P.V. Kokotovic. Springer-Verlag (1991) 347-433. [Google Scholar]
  57. M.H. Schultz, Spline Analysis. Prentice-Hall, Englewood Cliffs, NJ (1973). [Google Scholar]
  58. L.F. Shampine, Numerical Solution of Ordinary Differential Equations. Chapman & Hall, New York (1994). [Google Scholar]
  59. R.E. Showalter, Hilbert Space Methods for Partial Differential Equations. Pitman, London (1977). [Google Scholar]
  60. H. Tanabe, Equations of Evolution. Pitman, London (1979). [Google Scholar]
  61. S. Townley, Simple adaptive stabilization of output feedback stabilizable distributed parameter systems. Dynam. Control 5 (1995) 107-123. [CrossRef] [MathSciNet] [Google Scholar]
  62. K.S. Tsakalis and P.A. Ioannou, Time-Varying Systems: Control and Adaptation. Prentice Hall, Englewood Cliff, NJ (1993). [Google Scholar]
  63. J. Wen and M. Balas, Robust adaptive control in Hilbert space. J. Math. Anal. Appl. 143 (1989) 1-26. [CrossRef] [MathSciNet] [Google Scholar]
  64. J. Wloka, Partial Differential Equations. Cambridge University Press, Cambridge (1987). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.