Free Access
Issue
ESAIM: COCV
Volume 7, 2002
Page(s) 69 - 95
DOI https://doi.org/10.1051/cocv:2002004
Published online 15 September 2002
  1. E. Acerbi and N. Fusco, Regularity for minimizers of nonquadratic functionals: The case 1<p<2. J. Math. Anal. Appl. 140 (1989) 115-135. [CrossRef] [MathSciNet] [Google Scholar]
  2. L. Ambrosio, N. Fusco and D. Pallara, Special functions of bounded variation and free discontinuity problems. Oxford University Press (2000). [Google Scholar]
  3. J.M. Ball and R.D. James, Fine phase mixtures as minimizers of energy. Arch. Rational Mech. Anal. 100 (1987) 15-52. [Google Scholar]
  4. J.M. Ball and R.D. James, Proposed experimental tests of a theory of fine microstructure and the two wells problem. Philos. Trans. Roy. Soc. London Ser. A 338 (1991) 389-450. [Google Scholar]
  5. P. Celada and S. Perrotta, Minimizing non convex, multiple integrals: A density result. Proc. Roy. Soc. Edinburgh Sect. A 130 (2000) 721-741. [CrossRef] [MathSciNet] [Google Scholar]
  6. A. Cellina, On minima of a functional of the gradient: Necessary conditions. Nonlinear Anal. 20 (1993) 337-341. [CrossRef] [MathSciNet] [Google Scholar]
  7. A. Cellina, On minima of a functional of the gradient: Sufficient conditions. Nonlinear Anal. 20 (1993) 343-347. [CrossRef] [MathSciNet] [Google Scholar]
  8. B. Dacorogna and P. Marcellini, Existence of minimizers for non quasiconvex integrals. Arch. Rational Mech. Anal. 131 (1995) 359-399. [CrossRef] [MathSciNet] [Google Scholar]
  9. B. Dacorogna and P. Marcellini, Théorème d'existence dans le cas scalaire et vectoriel pour les équations de Hamilton-Jacobi. C. R. Acad. Sci. Paris Sér. I Math. 322 (1996) 237-240. [Google Scholar]
  10. B. Dacorogna and P. Marcellini, Sur le problème de Cauchy-Dirichlet pour les systèmes d'équations non linéaires du premier ordre. C. R. Acad. Sci. Paris Sér. I Math. 323 (1996) 599-602. [Google Scholar]
  11. B. Dacorogna and P. Marcellini, General existence theorems for Hamilton-Jacobi equations in the scalar and vectorial case. Acta Math. 178 (1997) 1-37. [CrossRef] [MathSciNet] [Google Scholar]
  12. B. Dacorogna and P. Marcellini, Implicit partial differential equations. Birkhäuser, Boston (1999). [Google Scholar]
  13. B. Dacorogna and P. Marcellini, Attainment of minima and implicit partial differential equations. Ricerche Mat. 48 (1999) 311-346. [MathSciNet] [Google Scholar]
  14. F.S. De Blasi and G. Pianigiani, On the Dirichlet problem for first order partial differential equations. A Baire category approach. NoDEA Nonlinear Differential Equations Appl. 6 (1999) 13-34. [CrossRef] [MathSciNet] [Google Scholar]
  15. G. Dolzmann, B. Kirchheim, S. Müller and V. Sverák, The two-well problem in three dimensions. Calc. Var. Partial Differential Equations 10 (2000) 21-40. [CrossRef] [MathSciNet] [Google Scholar]
  16. L.C. Evans, Quasiconvexity and partial regularity in the calculus of variations. Arch. Rational Mech. Anal. 95 (1986) 227-252. [Google Scholar]
  17. L.C. Evans and R.F. Gariepy, Blowup, compactness and partial regularity in the calculus of variations. Indiana Univ. Math. J. 36 (1987) 361-371. [CrossRef] [MathSciNet] [Google Scholar]
  18. I. Fonseca and G. Francfort, 3D-2D asymptotic analysis of an optimal design problem for thin films. J. Reine Angew. Math. 505 (1998) 173-202. [CrossRef] [MathSciNet] [Google Scholar]
  19. I. Fonseca and N. Fusco, Regularity results for anisotropic image segmentation models. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 24 (1997) 463-499. [MathSciNet] [Google Scholar]
  20. I. Fonseca and G. Leoni, Bulk and contact energies: Nucleation and relaxation. SIAM J. Math. Anal. 30 (1998) 190-219. [CrossRef] [Google Scholar]
  21. G. Friesecke, A necessary and sufficient condition for non attainment and formation of microstructure almost everywhere in scalar variational problems. Proc. Royal Soc. Edinburgh Sect. A 124 (1994) 437-471. [Google Scholar]
  22. P. Marcellini, A relation between existence of minima for nonconvex integrals and uniqueness for not strictly convex integrals of the calculus of variations, Math. Theories of Optimization, edited by J.P. Cecconi and T. Zolezzi. Springer-Verlag, Lecture Notes in Math. 979 (1983) 216-231. [Google Scholar]
  23. E. Mascolo and R. Schianchi, Existence theorems for nonconvex problems. J. Math. Pures Appl. 62 (1983) 349-359. [MathSciNet] [Google Scholar]
  24. E. Mascolo and R. Schianchi, Nonconvex problems in the calculus of variations. Nonlinear Anal. 9 (1985) 371-379. [CrossRef] [MathSciNet] [Google Scholar]
  25. E. Mascolo and R. Schianchi, Existence theorems in the calculus of variations. J. Differential Equations 67 (1987) 185-198. [CrossRef] [MathSciNet] [Google Scholar]
  26. S. Müller and V. Sverák, Attainment results for the two-well problem by convex integration, edited by J. Jost. International Press (1996) 239-251. [Google Scholar]
  27. J.P. Raymond, Existence of minimizers for vector problems without quasiconvexity conditions. Nonlinear Anal. 18 (1992) 815-828. [CrossRef] [MathSciNet] [Google Scholar]
  28. M.A. Sychev, Characterization of homogeneous scalar variational problems solvable for all boundary data. Proc. Roy. Soc. Edinburgh Sect. A 130 (2000) 611-631. [MathSciNet] [Google Scholar]
  29. S. Zagatti, Minimization of functionals of the gradient by Baire's theorem. SIAM J. Control Optim. 38 (2000) 384-399. [CrossRef] [MathSciNet] [Google Scholar]
  30. W.P. Ziemer, Weakly differentiable functions. Springer-Verlag, New York, Grad. Texts in Math. (1989). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.