Free Access
Issue
ESAIM: COCV
Volume 8, 2002
A tribute to JL Lions
Page(s) 31 - 68
DOI https://doi.org/10.1051/cocv:2002017
Published online 15 August 2002
  1. G. Anzelotti, S. Baldo and A. Visintin, Asymptotic behavior of the Landau-Lifschitz model of ferromagnetism. Appl. Math. Optim. 23 (1991) 171-193. [CrossRef] [MathSciNet] [Google Scholar]
  2. L. Ambrosio, C. De Lellis and C. Mantegazza, Line energies for gradient vector fields in the plane. Calc. Var. Partial Differential Equation 9 (1999) 327-355. [CrossRef] [MathSciNet] [Google Scholar]
  3. P. Aviles and Y. Giga, A mathematical problem related to the physical theory of liquid crystals configurations. Proc. Centre Math. Anal. Austral. Nat. Univ. 12 (1987) 1-16. [Google Scholar]
  4. P. Aviles and Y. Giga, On lower semicontinuity of a defect obtained by a singular limit of the Ginzburg-Landau type energy for gradient fields. Proc. Royal Soc. Edinburgh Sect. A 129 (1999) 1-17. [Google Scholar]
  5. L. Ambrosio, M. Lecumberry and T. Rivière, A Viscosity Property of Minimizing Micromagnetic Configurations. Preprint. [Google Scholar]
  6. N. André and I. Shafrir, On nematics stabilized by a large external field. Rev. Math. Phys. 11 (1999) 653-710. [CrossRef] [MathSciNet] [Google Scholar]
  7. F. Bethuel, H. Brezis and F. Hélein, Ginzburg-Landau vortices. Birkhauser (1994). [Google Scholar]
  8. F. Bethuel and X. Zheng, Density of smooth functions between two manifolds in Sobolev spaces. J. Func. Anal. 80 (1988) 60-75. [CrossRef] [MathSciNet] [Google Scholar]
  9. W. Brown, Micromagnetics. Wiley, New York (1963). [Google Scholar]
  10. G. Carbou, Regularity for critical points of a non local energy. Calc. Var. Partial Differential Equation 5 (1997) 409-433. [CrossRef] [MathSciNet] [Google Scholar]
  11. S. Conti, I. Fonseca and G. Leoni, A Γ-convergence result for the two-gradient theory of phase transitions. Preprint. [Google Scholar]
  12. A. DeSimone, Energy minimizers for large ferromagnetic bodies. Arch. Rational Mech. Anal. 125 (1993) 99-143. [CrossRef] [MathSciNet] [Google Scholar]
  13. B. Dacorogna and I. Fonseca, Minima absolus pour des énergies ferromagnétiques. C. R. Acad. Sci. Paris 331 (2000) 497-500. [Google Scholar]
  14. A. DeSimone, R.V. Kohn, S. Müller and F. Otto, A compactness result in the gradient theory of phase transitions. Proc. Roy. Soc. Edinburgh 131 (2001) 833-844. [CrossRef] [MathSciNet] [Google Scholar]
  15. A. DeSimone, R.V. Kohn, S. Müller and F. Otto, Magnetic microstructures, a paradigm of multiscale problems. Proceedings of ICIAM. [Google Scholar]
  16. A. DeSimone, R.V. Kohn, S. Müller and F. Otto, A reduced theory for thin-film micromagnetics. Preprint (2001). [Google Scholar]
  17. A. DeSimone, R.V. Kohn, S. Müller and F. Otto (in preparation). [Google Scholar]
  18. C. Evans and R. Gariepy, Measure theory and fine properties of functions. CRC Press, Boca Raton, FL, Stud. Adv. Math. (1992). [Google Scholar]
  19. R. Hardt and D. Kinderlehrer, Some regularity results in ferromagnetism. Comm. Partial Differential Equation 25 (2000) 1235-1258. [CrossRef] [Google Scholar]
  20. F. Hang, Ph.D. Thesis. Courant Institute (2001). [Google Scholar]
  21. A. Hubert and R. Schäfer, Magnetic Domains. Springer (1998). [Google Scholar]
  22. W. Jin and R. Kohn, Singular Perturbation and the Energy of Folds. J. Nonlinear Sci. 10 (2000) 355-390. [CrossRef] [MathSciNet] [Google Scholar]
  23. R.D. James and D. Kinderlehrer, Frustration in ferromagnetic materials, Continuum Mech. Thermodynamics 2 (1990) 215-239. [CrossRef] [MathSciNet] [Google Scholar]
  24. P.E. Jabin, F. Otto, and B. Perthame, Ginzburg-Landau line energies: The zero-energy case (to appear). [Google Scholar]
  25. P.E. Jabin and B. Perthame, Compactness in Ginzburg-Landau energy by kinetic averaging. Comm. Pure Appl. Math. 54 (2001) 1096-1109. [CrossRef] [MathSciNet] [Google Scholar]
  26. M. Lecumberry and T. Rivière, Regularity for micromagnetic configurations having zero jump energy. Calc. Var. Partial Differential Equations (to appear). [Google Scholar]
  27. L. Modica and Mortola, Il limite nella Γ-convergenza di una famiglia di funzionali ellittici. Boll. Un. Mat. Ital. A (5) 14 (1977) 526-529. [MathSciNet] [Google Scholar]
  28. Y. Nakatani, Y. Uesaka and N. Hayashi, Direct solution of the Landau-Lifshitz-Gilbert equation for micromagnetics. Japanese J. Appl. Phys. 28 (1989) 2485-2507. [CrossRef] [Google Scholar]
  29. W. Rave and A. Hubert, The Magnetic Ground State of a Thin-Film Element. IEEE Trans. Mag. 36 (2000) 3886-3899. [CrossRef] [Google Scholar]
  30. T. Rivière and S. Serfaty, Limiting Domain Wall Energy for a Problem Related to Micromagnetics. Comm. Pure Appl. Math. 54 (2001) 294-338. [CrossRef] [MathSciNet] [Google Scholar]
  31. T. Rivière and S. Serfaty, Compactness, kinetic formulation and entropies for a problem related to micromagnetics. Comm. in Partial Differential Equations (to appear). [Google Scholar]
  32. A. Visintin, On Landau-Lifschitz equations for ferromagnetism, Japanese J. Appl. Math. 2 (1985) 69-84. [CrossRef] [MathSciNet] [Google Scholar]
  33. E. Sandier, preprint (1999) and habilitation thesis. University of Tours (2000). [Google Scholar]
  34. P. Sternberg, The effect of a singular perturbation on nonconvex variational problems. Arch. Rational Mech. Anal. 101 (1988) 209-260. [CrossRef] [MathSciNet] [Google Scholar]
  35. H.A.M. Van den Berg, Self-consistent domain theory in soft micromagnetic media, II, Basic domain structures in thin film objects. J. Appl. Phys. 60 (1986) 1104-1113. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.