A tribute to JL Lions
Free Access
Volume 8, 2002
A tribute to JL Lions
Page(s) 1 - 30
DOI https://doi.org/10.1051/cocv:2002016
Published online 15 August 2002
  1. G. Allaire, Homogenization and two scale convergence. SIAM 23 (1992) 1482-1518. [CrossRef] [MathSciNet] [Google Scholar]
  2. G. Allaire and G. Bal, Homogenization of the critically spectral equation in neutron transport. ESAIM: M2AN 33 (1999) 721-746. [CrossRef] [EDP Sciences] [Google Scholar]
  3. G. Allaire and Y. Capdeboscq, Homogenization of a spectral problem in neutronic multigroup diffusion. Comput. Methods Appl. Mech. Engrg. 187 (2000) 91-117. [CrossRef] [MathSciNet] [Google Scholar]
  4. G. Allaire and A. Piatnitski, Uniform spectral asymptotics for singularly perturbed locally periodic operators. Com. Partial Differential Equations 27 (2002) 705-725. [CrossRef] [MathSciNet] [Google Scholar]
  5. P. Anselone, Collectively compact operator approximation theory. Prentice-Hall, Englewood Cliffs, NJ (1971). [Google Scholar]
  6. G. Bal, Couplage d'équations et homogénéisation en transport neutronique, Ph.D. Thesis. Paris 6 (1997). [Google Scholar]
  7. height 2pt depth -1.6pt width 23pt, Homogenization of a spectral equation with drift in linear transport. ESAIM: COCV 6 (2001) 613-627. [CrossRef] [EDP Sciences] [Google Scholar]
  8. A. Bensoussan, J.-L. Lions and G. Papanicolaou, Boundary layer and homogenization of transport processes. Publ. RIMS Kyoto Univ. (1979) 53-157. [Google Scholar]
  9. Y. Capdeboscq, Homogénéisation des modèles de diffusion en neutronique, Ph.D. Thesis. Paris 6 (1999). [Google Scholar]
  10. F. Chatelin, Spectral approximation of linear operators. Academic Press (1983). [Google Scholar]
  11. R. Dautray and J.-L. Lions, Mathematical analysis and numerical methods for science and technology. Springer Verlag, Berlin (1993). [Google Scholar]
  12. P. Degond, T. Goudon and F. Poupaud, Diffusion limit for nonhomogeneous and non-micro-reversible processes. Indiana Univ. Math. J. 49 (2000) 1175-1198. [Google Scholar]
  13. J. Glimm and A. Jaffe, Quantum Physics. A Functional Integral Point of View. Springer-Verlag, New York, Berlin (1981). [Google Scholar]
  14. F. Golse, P.L. Lions, B. Perthame and R. Sentis, Regularity of the moments of the solution of a transport equation. J. Funct. Anal. 76 (1988) 110-125. [Google Scholar]
  15. F. Golse, B. Perthame and R. Sentis, Un résultat de compacité pour les équations de transport et application au calcul de la limite de la valeur propre principale d'un opérateur de transport. C. R. Acad. Sci. Paris (1985) 341-344. [Google Scholar]
  16. T. Goudon and A. Mellet, Diffusion approximation in heterogeneous media. Asymptot. Anal. (to appear). [Google Scholar]
  17. T. Goudon and F. Poupaud, Approximation by homogenization and diffusion of kinetic equations. Comm. Partial Differential Equations 26 (2001) 537-569. [CrossRef] [MathSciNet] [Google Scholar]
  18. S. Kozlov, Reductibility of quasiperiodic differential operators and averaging. Transc. Moscow Math. Soc. 2 (1984) 101-126. [Google Scholar]
  19. E. Larsen, Neutron transport and diffusion in inhomogeneous media (1). J. Math. Phys. (1975) 1421-1427. [Google Scholar]
  20. height 2pt depth -1.6pt width 23pt, Neutron transport and diffusion in inhomogeneous media (2). Nuclear Sci. Engrg. (1976) 357-368. [Google Scholar]
  21. E. Larsen and J. Keller, Asymptotic solution of neutron transport problems for small mean free paths. J. Math. Phys. (1974) 75-81. [Google Scholar]
  22. M. Mokhtar-Kharoubi, Les équations de la neutronique, Thèse de Doctorat d'État. Paris XIII (1987). [Google Scholar]
  23. M. Mokhtar-Kharoubi, Mathematical topics in neutron transport theory. World Scientific Publishing Co. Inc., River Edge, NJ (1997). [Google Scholar]
  24. A. Piatnitski, Asymptotic behaviour of the ground state of singularly perturbed elliptic equations. Commun. Math. Phys. 197 (1998) 527-551. [Google Scholar]
  25. J.E. Potter, Matrix quadratic solutions, J. SIAM Appl. Math. 14 (1966) 496-501. [CrossRef] [Google Scholar]
  26. D.L. Russel, Mathematics of finite-dimensional control systems, theory and design. Lecture Notes in Pure Appl. Math. 43 (1979). [Google Scholar]
  27. R. Sentis, Study of the corrector of the eigenvalue of a transport operator. SIAM J. Math. Anal. (1985) 151-166. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.