A tribute to JL Lions
Free Access
Issue
ESAIM: COCV
Volume 8, 2002
A tribute to JL Lions
Page(s) 489 - 511
DOI https://doi.org/10.1051/cocv:2002048
Published online 15 August 2002
  1. F. Aguirre and C. Conca, Eigenfrequencies of a tube bundle immersed in a fluid. Appl. Math. Optim. 18 (1988) 1-38. [Google Scholar]
  2. G. Allaire, Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (1992) 1482-1518. [Google Scholar]
  3. G. Allaire and C. Conca, Bloch-wave homogenization and spectral asymptotic analysis. J. Math. Pures Appl. 77 (1998) 153-208. [Google Scholar]
  4. G. Allaire and C. Conca, Boundary layers in the homogenization of a spectral problem in fluid-solid structures. SIAM J. Math. Anal. 29 (1997) 343-379. [CrossRef] [MathSciNet] [Google Scholar]
  5. G. Allaire and C. Conca, Bloch wave homogenization for a spectral problem in fluid-solid structures. Arch. Rational Mech. Anal. 135 (1996) 197-257. [CrossRef] [Google Scholar]
  6. G. Allaire and C. Conca, Analyse asymptotique spectrale de l'équation des ondes. Homogénéisation par ondes de Bloch. C. R. Acad. Sci. Paris Sér. I Math. 321 (1995) 293-298. [Google Scholar]
  7. G. Allaire and C. Conca, Analyse asymptotique spectrale de l'équation des ondes. Complétude du spectre de Bloch. C. R. Acad. Sci. Paris Sér. I Math. 321 (1995) 557-562. [Google Scholar]
  8. A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic Analysis in Periodic Structures. North-Holland, Amsterdam (1978). [Google Scholar]
  9. F. Bloch, Über die Quantenmechanik der Electronen in Kristallgittern. Z. Phys. 52 (1928) 555-600. [Google Scholar]
  10. L. Boccardo and P. Marcellini, Sulla convergenza delle soluzioni di disequazioni variazionali. Ann. Mat. Pura Appl. 4 (1977) 137-159. [Google Scholar]
  11. C. Castro and E. Zuazua, Une remarque sur l'analyse asymptotique spectrale en homogénéisation. C. R. Acad. Sci. Paris Sér. I Math. 322 (1996) 1043-1048. [Google Scholar]
  12. A. Cherkaev and R. Kohn, Topics in the Mathematical Modelling of Composite Materials. Birkhäuser, Boston (1997). [Google Scholar]
  13. C. Conca, S. Natesan and M. Vanninathan, Numerical experiments with the Bloch-Floquet approach in homogenization (to appear). [Google Scholar]
  14. C. Conca, R. Orive and M. Vanninathan, Bloch Approximation in Homogenization and Applications. SIAM J. Math. Anal. (in press). [Google Scholar]
  15. C. Conca, R. Orive and M. Vanninathan, Bloch Approximation in bounded domains. Preprint (2002). [Google Scholar]
  16. C. Conca, R. Orive and M. Vanninathan, Application of Bloch decomposition in wave propagation problems (in preparation). [Google Scholar]
  17. C. Conca, J. Planchard and M. Vanninathan, Fluids and Periodic Structures. J. Wiley and Sons/Masson, New York/Paris, Collection RAM 38 (1995). [Google Scholar]
  18. C. Conca, J. Planchard and M. Vanninathan, Limiting behaviour of a spectral problem in fluid-solid structures. Asymp. Anal. 6 (1993) 365-389. [Google Scholar]
  19. C. Conca, J. Planchard, B. Thomas and M. Vanninathan, Problèmes Mathématiques en Couplage Fluide-Structure. Applications aux Faisceaux Tubulaires. Eyrolles, Paris (1994). [Google Scholar]
  20. C. Conca and M. Vanninathan, Homogenization of periodic structures via Bloch decomposition. SIAM J. Appl. Math. 57 (1997) 1639-1659. [Google Scholar]
  21. C. Conca and M. Vanninathan, On uniform H2-estimates in periodic homogenization. Proc. Roy. Soc. Edinburgh Sect. A 131 (2001) 499-517. [CrossRef] [MathSciNet] [Google Scholar]
  22. C. Conca and M. Vanninathan, A spectral problem arising in fluid-solid structures. Comput. Methods Appl. Mech. Engrg. 69 (1988) 215-242. [CrossRef] [MathSciNet] [Google Scholar]
  23. G. Dal Maso, An Introduction to Formula Convergence. Birkhäuser, Boston (1993). [Google Scholar]
  24. A. Figotin and P. Kuchment, Band-gap structure of spectra of periodic dielectric and accoustic media. I, scalar model. SIAM J. Appl. Math. 56 (1996) 68-88. [Google Scholar]
  25. G. Floquet, Sur les équations différentielles linéaires à coefficients périodiques. Ann. École Norm. Sér. 2 12 (1883) 47-89. [Google Scholar]
  26. I.M. Gelfand, Expansion in series of eigenfunctions of an equation with periodic coefficients. Dokl. Akad. Nauk SSSR 73 (1950) 1117-1120. [Google Scholar]
  27. P. Gérard, Mesures semi-classiques et ondes de Bloch, in Séminaire Equations aux Dérivées Partielles, Vol. 16, 1990-1991. École Polytechnique, Palaiseau (1991). [Google Scholar]
  28. P. Gérard, Microlocal defect measures. Comm. Partial Differential Equation 16 (1991) 1761-1794. [CrossRef] [Google Scholar]
  29. P. Gérard, P.A. Markowich, N.J. Mauser and F. Poupaud, Homogenization limits and Wigner transforms. Comm. Pure. Appl. Math. 50 (1997) 321-377. [Google Scholar]
  30. L. Hörmander, Analysis of Linear Partial Differential Operators III. Springer-Verlag, Berlin (1985). [Google Scholar]
  31. S. Kesavan, Homogenization of elliptic eigenvalue problems, I and II. Appl. Math. Optim. 5 (1979) 153-167, 197-216. [Google Scholar]
  32. P.L. Lions and T. Paul, Sur les mesures de Wigner. Revista Math. Iberoamer. 9 (1993) 553-618. [Google Scholar]
  33. P.A. Markowich, N.J. Mauser and F. Poupaud, A Wigner function approach to semiclassical limits: electrons in a periodic potential. J. Math. Phys. 35 (1994) 1066-1094. [Google Scholar]
  34. R. Morgan and I. Babuska, An approach for constructing families of homogenized equations for periodic media I and II. SIAM J. Math. Anal. 2 (1991) 1-15, 16-33. [Google Scholar]
  35. F. Murat, (1977-78) H-Convergence, Séminaire d'Analyse Fonctionnelle et Numérique de l'Université d'Alger, mimeographed notes. English translation: Murat and L. Tartar, H-Convergence, in F. Topics in the Mathematical Modelling of Composite Materials, edited by A. Cherkaev and R. Kohn. Birkhäuser Verlag, Boston. Series Progress in Nonlinear Differential Equations and their Applications 31 (1977). [Google Scholar]
  36. F. Murat, A survey on compensated compactness, in Contributions to Modern Calculus of Variations, edited by L. Cesari, Pitman Res. Notes in Math. Ser. 148 (1987) 145-183. [Google Scholar]
  37. G. Nguetseng, A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20 (1989) 608-623. [CrossRef] [MathSciNet] [Google Scholar]
  38. F. Odeh and J.B. Keller, Partial differential equations with periodic coefficients and Bloch waves in crystals. J. Math. Phys. 5 (1964) 1499-1504. [Google Scholar]
  39. O.A. Oleinik, A.S. Shamaev and G.A. Yosifian, On the limiting behaviour of a sequence of operators defined in different Hilbert's spaces. Upsekhi Math. Nauk. 44 (1989) 157-158. [Google Scholar]
  40. J. Planchard, Global behaviour of large elastic tube-bundles immersed in a fluid. Comput. Mech. 2 (1987) 105-118. [Google Scholar]
  41. J. Planchard, Eigenfrequencies of a tube-bundle placed in a confined fluid. Comput. Methods Appl. Mech. Engrg. 30 (1982) 75-93. [CrossRef] [MathSciNet] [Google Scholar]
  42. M. Reed and B. Simon, Methods of Modern Mathematical Physics. I. Functional Analysis, II. Fourier Analysis and Self-Adjointness, III. Scattering Theory, IV. Analysis of Operators. Academic Press, New York (1972-78). [Google Scholar]
  43. E. Sánchez-Palencia, Non-Homogeneous Media and Vibration Theory. Springer-Verlag, Berlin. Lecture Notes in Phys. 127 (1980). [Google Scholar]
  44. J. Sánchez-Hubert and E. Sánchez-Palencia, Vibration and Coupling of Continuous Systems. Asymptotic Methods. Springer-Verlag, Berlin (1989). [Google Scholar]
  45. F. Santosa and W.W. Symes, A dispersive effective medium for wave propagation in periodic composites. SIAM J. Appl. Math. 51 (1991) 984-1005. [Google Scholar]
  46. L. Tartar, H-measures, a new approach for studying homogenization, oscillations and concentration effects in partial differential equations. Proc. Roy. Soc. Edinburgh Sect. A 115 (1990) 193-230. [CrossRef] [MathSciNet] [Google Scholar]
  47. L. Tartar, Problèmes d'Homogénéisation dans les Equations aux Dérivées Partielles, Cours Peccot au Collège de France (1977). Partially written in F. Murat []. [Google Scholar]
  48. M. Vanninathan, Homogenization and eigenvalue problems in perforated domains. Proc. Indian Acad. Sci. Math. Sci. 90 (1981) 239-271. [CrossRef] [MathSciNet] [Google Scholar]
  49. C. Wilcox, Theory of Bloch waves. J. Anal. Math. 33 (1978) 146-167. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.