A tribute to JL Lions
Free Access
Issue
ESAIM: COCV
Volume 8, 2002
A tribute to JL Lions
Page(s) 693 - 702
DOI https://doi.org/10.1051/cocv:2002030
Published online 15 August 2002
  1. E.J. Anderson and P. Nash, Linear Programming in Infinite Dimensional Spaces. Wiley (1987). [Google Scholar]
  2. D. Bertsimas and J. Tsitsiklis, Introduction to Linear Optimization. Athena Scientific (1997). [Google Scholar]
  3. L.C. Evans, Partial differential equations and Monge-Kantorovich mass transfer (survey paper). Available at the website of LCE, at math.berkeley.edu [Google Scholar]
  4. L.C. Evans, Some new PDE methods for weak KAM theory. Calc. Var. Partial Differential Equations (to appear). [Google Scholar]
  5. L.C. Evans and D. Gomes, Effective Hamiltonians and averaging for Hamiltonian dynamics I. Arch. Rational Mech. Anal. 157 (2001) 1-33. [CrossRef] [MathSciNet] [Google Scholar]
  6. A. Fathi, Théorème KAM faible et théorie de Mather sur les systèmes lagrangiens. C. R. Acad. Sci. Paris Sér. I Math. 324 (1997) 1043-1046. [Google Scholar]
  7. A. Fathi, Solutions KAM faibles conjuguées et barrières de Peierls. C. R. Acad. Sci. Paris Sér. I Math. 325 (1997) 649-652. [Google Scholar]
  8. A. Fathi, Weak KAM theory in Lagrangian Dynamics, Preliminary Version. Lecture Notes (2001). [Google Scholar]
  9. J. Franklin, Methods of Mathematical Economics. SIAM, Classics in Appl. Math. 37 (2002). [Google Scholar]
  10. D. Gomes, Numerical methods and Hamilton-Jacobi equations (to appear). [Google Scholar]
  11. P. Lax, Linear Algebra. John Wiley (1997). [Google Scholar]
  12. P.-L. Lions, G. Papanicolaou and S.R.S. Varadhan, Homogenization of Hamilton-Jacobi equations. CIRCA (1988) (unpublished). [Google Scholar]
  13. J. Mather, Minimal measures. Comment. Math Helvetici 64 (1989) 375-394. [CrossRef] [MathSciNet] [Google Scholar]
  14. J. Mather, Action minimizing invariant measures for positive definite Lagrangian systems. Math. Z. 207 (1991) 169-207. [CrossRef] [MathSciNet] [Google Scholar]
  15. J. Mather and G. Forni, Action minimizing orbits in Hamiltonian systems. Transition to Chaos in Classical and Quantum Mechanics, edited by S. Graffi. Sringer, Lecture Notes in Math. 1589 (1994). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.