Free Access
Volume 8, 2002
A tribute to JL Lions
Page(s) 703 - 713
Published online 15 August 2002
  1. C. Berrou and A. Glavieux, Near-optimum error-correcting coding and decoding: Turbo-codes. IEEE Trans. Communicat. 44 (1996) 1261-1271. [CrossRef] [Google Scholar]
  2. R.E. Blahut, Theory and Practice of Error Control Codes. Addison-Wesley (1983). [Google Scholar]
  3. N. Bourbaki, Algèbre, Chap. 2. Hermann (1970). [Google Scholar]
  4. G. Cohen, J.-L. Dornstetter and P. Godlewski, Codes correcteurs d'erreurs. Masson (1992). [Google Scholar]
  5. R.M. Cohn, Difference Algebra. Interscience (1965). [Google Scholar]
  6. A. Dholakia, Introduction to Convolutional Codes with Applications. Kluwer (1994). [Google Scholar]
  7. F. Fagnani and S. Zampieri, System-theoretic properties of convolutional codes over rings. IEEE Trans. Inform. Theory 47 (2001) 2256-2274. [CrossRef] [MathSciNet] [Google Scholar]
  8. M. Fliess, Automatique en temps discret et algèbre aux différences. Forum Math. 2 (1990) 213-232. [CrossRef] [MathSciNet] [Google Scholar]
  9. M. Fliess, Some basic structural properties of generalized linear systems. Systems Control Lett. 15 (1990) 391-396. [CrossRef] [MathSciNet] [Google Scholar]
  10. M. Fliess, A remark on Willems' trajectory characterization of linear controllability. Systems Control Lett. 19 (1992) 43-45. [CrossRef] [MathSciNet] [Google Scholar]
  11. M. Fliess, Reversible linear and nonlinear discrete-time dynamics. IEEE Trans. Automat. Control 37 (1992) 1144-1153. [CrossRef] [MathSciNet] [Google Scholar]
  12. M. Fliess, Une interprétation algébrique de la transformation de Laplace et des matrices de transfert. Linear Algebra Appl. 203-204 (1994) 429-442. [CrossRef] [Google Scholar]
  13. M. Fliess, Variations sur la notion de contrôlabilité, in Journée Soc. Math. France. Paris (2000) 47-86. [Google Scholar]
  14. M. Fliess and H. Bourlès, Discussing some examples of linear system interconnections. Systems Control Lett. 27 (1996) 1-7. [CrossRef] [MathSciNet] [Google Scholar]
  15. M. Fliess, J. Lévine, P. Martin and P. Rouchon, Flatness and defect of non-linear systems: Introductory theory and applications. Internat. J. Control 61 (1995) 1327-1361. [CrossRef] [MathSciNet] [Google Scholar]
  16. M. Fliess and R. Marquez, Continuous-time linear predictive control and flatness: A module-theoretic setting with examples. Internat. J. Control 73 (2000) 606-623. [CrossRef] [MathSciNet] [Google Scholar]
  17. M. Fliess and R. Marquez, Une approche intrinsèque de la commande prédictive linéaire discrète. APII J. Europ. Syst. Automat. 35 (2001) 127-147. [Google Scholar]
  18. M. Fliess, R. Marquez, E. Delaleau and H. Sira-Ramírez, Correcteurs proportionnels-intégraux généralisés. ESAIM: COCV 7 (2002) 23-41. [CrossRef] [EDP Sciences] [Google Scholar]
  19. M. Fliess, R. Marquez and H. Mounier, An extension of predictive control, PID regulators and Smith predictors to some linear delay systems. Internat. J. Control (to appear). [Google Scholar]
  20. M. Fliess and H. Mounier, Controllability and observability of linear delay systems: An algebraic approach. ESAIM: COCV 3 (1998) 301-314. [CrossRef] [EDP Sciences] [Google Scholar]
  21. G.D. Forney Jr., Convolutional codes I: Algebraic structure. IEEE Trans. Inform. Theory 16 (1970) 720-738. [CrossRef] [Google Scholar]
  22. G.D. Forney Jr., Minimal bases of rational vector spaces, with applications to multivariable linear systems. SIAM J. Control 13 (1975) 493-520. [CrossRef] [MathSciNet] [Google Scholar]
  23. G.D. Forney Jr., Algebraic structure of convolutional codes and algebraic system theory, in Mathematical System Theory - The Influence of R.E. Kalman, edited by A.C. Antoulas. Springer (1991) 527-557. [Google Scholar]
  24. G.D. Forney Jr. and M.D. Trott, The dynamics of group codes: State-space, trellis diagrams and canonical encoders. IEEE Trans. Inform. Theory 39 (1993) 1491-1513. [CrossRef] [MathSciNet] [Google Scholar]
  25. G.D. Forney Jr., B. Marcus, N.T. Sindhushayana and M. Trott, A multilingual dictionary: System theory, coding theory, symbolic dynamics and automata theory, in Different Aspects of Coding Theory. Proc. Symp. Appl. Math. 50; Amer. Math. Soc. (1995) 109-138. [Google Scholar]
  26. R. Johannesson and K.Sh. Zigangirov, Fundamentals of Convolutional Coding. IEEE Press (1999). [Google Scholar]
  27. T. Kailath, Linear Systems. Prentice-Hall (1979). [Google Scholar]
  28. E.W. Kamen, P.P. Khargonekar and K.R. Poola, A transfer-function approach to linear time-varying discrete-time systems. SIAM J. Control Optim. 23 (1985) 550-565. [CrossRef] [MathSciNet] [Google Scholar]
  29. T.Y. Lam, Lectures on Rings and Modules. Springer (1999). [Google Scholar]
  30. S. Lin and D.J. Costello Jr., Error Control Coding: Fundamentals and Applications. Prentice-Hall (1983). [Google Scholar]
  31. J.H. van Lint, Introduction to Coding Theory, Formula Edition. Springer (1999). [Google Scholar]
  32. H.-A. Loeliger, G.D. Forney Jr., T. Mittelholzer and M.D. Trott, Minimality and observability of group systems. Linear Algebra Appl. 205-206 (1994) 937-963. [CrossRef] [Google Scholar]
  33. J.L. Massey and M.K. Sain, Codes, automata and contnuous systems: Explicit interconnections. IEEE Trans. Automat. Control 12 (1967) 644-650. [CrossRef] [Google Scholar]
  34. R.J. McEliece, The algebraic theory of convolutional codes, in Handbook of Coding Theory, Vol. 1, edited by V. Pless and W.C. Huffman. Elsevier (1998) 1065-1138. [Google Scholar]
  35. J.C. McConnel and J.C. Robson, Noncommutative Noetherian Rings. Wiley (1987). [Google Scholar]
  36. H. Mounier, P. Rouchon and J. Rudolph, Some examples of linear systems with delays. APII J. Europ. Syst. Automat. 31 (1997) 911-925. [Google Scholar]
  37. P. Piret, Convolutional Codes, an Algebraic Approach. MIT Press (1988). [Google Scholar]
  38. J. Rosenthal, Connections between linear systems and convolutional codes, in Codes, Systems and Graphical Models, edited by B. Marcus and J. Rosenthal. Springer (2000) 39-66. [Google Scholar]
  39. J. Rosenthal, J.M. Schumacher and E.V. York, On behaviors and convolutional codes. IEEE Trans. Informat. Theory 42 (1996) 1881-1891. [CrossRef] [Google Scholar]
  40. J. Rosenthal and E.V. York, BCH convolutional codes. IEEE Trans. Inform. Theory 45 (1999) 1833-1844. [CrossRef] [MathSciNet] [Google Scholar]
  41. J. Rotman, An Introduction to Homological Algebra. Academic Press (1979). [Google Scholar]
  42. A.J. Viterbi and J.K. Omura, Principles of Digital Communication and Coding. McGraw-Hill (1979). [Google Scholar]
  43. L. Weiss, Controllability, realization and stability of discrete-time systems. SIAM J. Control 10 (1972) 230-251. [CrossRef] [MathSciNet] [Google Scholar]
  44. J.C. Willems, Paradigms and puzzles in the theory of dynamical systems. IEEE Trans. Automat. Control 36 (1991) 259-294. [CrossRef] [MathSciNet] [Google Scholar]
  45. G. Zémor, Cours de cryptographie. Cassini (2000). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.