A tribute to JL Lions
Free Access
Volume 8, 2002
A tribute to JL Lions
Page(s) 885 - 906
DOI https://doi.org/10.1051/cocv:2002053
Published online 15 August 2002
  1. G. Allaire, Homogenization of the Stokes flow in a connected porous medium. Asymptot. Anal. 2 (1989) 203-222. [Google Scholar]
  2. G. Allaire, Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (1992) 1482-1518. [Google Scholar]
  3. G. Allaire, Homogenization of the unsteady Stokes equations in porous media, in Progress in partial differential equations: Calculus of variations, applications, Pont-à-Mousson, 1991. Longman Sci. Tech., Harlow (1992) 109-123. [Google Scholar]
  4. A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic analysis for periodic structures. North-Holland Publishing Co., Amsterdam (1978). [Google Scholar]
  5. M.E. BogovskiFormula , Solutions of some problems of vector analysis, associated with the operators Formula and Formula , in Theory of cubature formulas and the application of functional analysis to problems of mathematical physics. Akad. Nauk SSSR Sibirsk. Otdel. Inst. Mat., Novosibirsk (1980) 5-40, 149. [Google Scholar]
  6. L. Cattabriga, Su un problema al contorno relativo al sistema di equazioni di Stokes. Rend. Sem. Mat. Univ. Padova 31 (1961) 308-340. [Google Scholar]
  7. H. Darcy, Les fontaines publiques de la ville de Dijon. Dalmont Paris (1856). [Google Scholar]
  8. J.I. Díaz, Two problems in homogenization of porous media, in Proc. of the Second International Seminar on Geometry, Continua and Microstructure, Getafe, 1998, Vol. 14 (1999) 141-155. [Google Scholar]
  9. E. Feireisl, On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not square integrable. Comment. Math. Univ. Carolin. 42 (2001) 83-98. [MathSciNet] [Google Scholar]
  10. G.P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations, Vol. I. Springer-Verlag, New York (1994). Linearized steady problems. [Google Scholar]
  11. J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod (1969). [Google Scholar]
  12. J.-L. Lions, Some methods in the mathematical analysis of systems and their control. Kexue Chubanshe (Science Press), Beijing (1981). [Google Scholar]
  13. P.-L. Lions, Mathematical topics in fluid mechanics, Vol. 1. The Clarendon Press Oxford University Press, New York (1996). Incompressible models, Oxford Science Publications. [Google Scholar]
  14. P.-L. Lions, Mathematical topics in fluid mechanics, Vol. 2. The Clarendon Press Oxford University Press, New York (1998). Compressible models, Oxford Science Publications. [Google Scholar]
  15. R. Lipton and M. Avellaneda, Darcy's law for slow viscous flow past a stationary array of bubbles. Proc. Roy. Soc. Edinburgh Sect. A 114 (1990) 71-79. [MathSciNet] [Google Scholar]
  16. N. Masmoudi (in preparation). [Google Scholar]
  17. A. Mikelic, Homogenization of nonstationary Navier-Stokes equations in a domain with a grained boundary. Ann. Mat. Pura Appl. (4) 158 (1991) 167-179. [CrossRef] [MathSciNet] [Google Scholar]
  18. G. Nguetseng, A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20 (1989) 608-623. [CrossRef] [MathSciNet] [Google Scholar]
  19. G. Nguetseng, Asymptotic analysis for a stiff variational problem arising in mechanics. SIAM J. Math. Anal. 21 (1990) 1394-1414. [CrossRef] [MathSciNet] [Google Scholar]
  20. E. Sánchez-Palencia, Nonhomogeneous media and vibration theory. Springer-Verlag, Berlin (1980). [Google Scholar]
  21. L. Tartar, Incompressible fluid flow in a porous medium: convergence of the homogenization process, in Nonhomogeneous media and vibration theory, edited by E. Sánchez-Palencia (1980) 368-377. [Google Scholar]
  22. R. Temam, Navier-Stokes equations and nonlinear functional analysis. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, Second Edition (1995). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.