Free Access
Volume 9, February 2003
Page(s) 553 - 562
Published online 15 September 2003
  1. N. Agwu and C. Martin, Optimal Control of Dynamic Systems: Application to Spline Approximations. Appl. Math. Comput. 97 (1998) 99-138. [CrossRef] [MathSciNet] [Google Scholar]
  2. M. Camarinha, P. Crouch and F. Silva-Leite, Splines of Class Ck on Non-Euclidean Spaces. IMA J. Math. Control Inform. 12 (1995) 399-410 [CrossRef] [MathSciNet] [Google Scholar]
  3. P. Crouch and J.W. Jackson, Dynamic Interpolation for Linear Systems, in Proc. of the 29th. IEEE Conference on Decision and Control. Hawaii (1990) 2312-2314 [Google Scholar]
  4. P. Crouch, G. Kun and F. Silva-Leite, Generalization of Spline Curves on the Sphere: A Numerical Comparison, in Proc. CONTROLO'98, 3rd Portuguese Conference on Automatic control. Coimbra, Portugal (1998). [Google Scholar]
  5. P. Crouch and F. Silva-Leite, The Dynamical Interpolation Problem: On Riemannian Manifolds, Lie Groups and Symmetric Spaces. J. Dynam. Control Systems 1 (1995) 177-202. [CrossRef] [MathSciNet] [Google Scholar]
  6. M. Egerstedt and C. Martin, Optimal Trajectory Planning and Smoothing Splines. Automatica 37 (2001). [Google Scholar]
  7. M. Egerstedt and C. Martin, Monotone Smoothing Splines, in Proc. of MTNS. Perpignan, France (2000). [Google Scholar]
  8. D. Nychka, Splines as Local Smoothers. Ann. Statist. 23 (1995) 1175-1197. [CrossRef] [MathSciNet] [Google Scholar]
  9. C. Martin, M. Egerstedt and S. Sun, Optimal Control, Statistics and Path Planning. Math. Comput. Modeling 33 (2001) 237-253. [CrossRef] [Google Scholar]
  10. R.C. Rodrigues, F. Silva-Leite and C. Sim oes, Generalized Splines and Optimal Control, in Proc. ECC'99. Karlsruhe, Germany (1999). [Google Scholar]
  11. S. Sun, M. Egerstedt and C. Martin, Control Theoretic Smoothing Splines. IEEE Trans. Automat. Control 45 (2000) 2271-2279. [CrossRef] [MathSciNet] [Google Scholar]
  12. G. Wahba, Spline Models for Observational Data. CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia (1990). [Google Scholar]
  13. E.J. Wegman and I.W. Wright, Splines in Statistics. J. Amer. Statist. Assoc. 78 (1983). [Google Scholar]
  14. Z. Zhang, J. Tomlinson and C. Martin, Splines and Linear Control Theory. Acta Math. Appl. 49 (1997) 1-34. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.