Free Access
Issue
ESAIM: COCV
Volume 9, March 2003
Page(s) 563 - 578
DOI https://doi.org/10.1051/cocv:2003027
Published online 15 September 2003
  1. H. Barucq and B. Hanouzet, Étude asymptotique du système de Maxwell avec la condition aux limites absorbante de Silver-Müller II. C. R. Acad. Sci. Paris Sér. I Math. 316 (1993) 1019-1024.
  2. C. Castro and E. Zuazua, Localization of waves in 1-d highly heterogeneous media. Arch. Rational Mech. Anal. 164 (2002) 39-72. [CrossRef]
  3. M.G. Crandall and A. Pazy, Nonlinear evolution equations in Banach spaces. Israel J. Math. 11 (1972) 57-94. [CrossRef] [MathSciNet]
  4. R. Dautray and J.L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Springer-Verlag, Vol. 3 (1990), Vol. 5 (1992).
  5. M. Eller, J.E. Lagnese and S. Nicaise, Decay rates for solutions of a Maxwell system with nonlinear boundary damping. Comp. Appl. Math. 21 (2002) 135-165.
  6. L.C. Evans, Nonlinear evolution equations in an arbitrary Banach space. Israel J. Math. 26 (1977) 1-42. [CrossRef] [MathSciNet]
  7. P. Grisvard, Elliptic problems in nonsmooth Domains. Pitman, Boston, Monogr. Stud. Math. 21 (1985).
  8. T. Kato, Nonlinear semigroups and evolution equations. J. Math. Soc. Japan 19 (1967) 508-520. [CrossRef] [MathSciNet]
  9. T. Kato, Linear and quasilinear equations of evolution of hyperbolic type, CIME, II Ciclo. Cortona (1976) 125-191.
  10. T. Kato, Abstract differential equations and nonlinear mixed problems. Accademia Nazionale dei Lincei, Scuola Normale Superiore, Lezione Fermiane, Pisa (1985).
  11. V. Komornik, Exact Controllability and Stabilization. The Multiplier Method. Masson-John Wiley, Collection RMA Paris 36 (1994).
  12. V. Komornik, Boundary stabilization, observation and control of Maxwell's equations. Panamer. Math. J. 4 (1994) 47-61. [MathSciNet]
  13. J.E. Lagnese, Exact controllability of Maxwell's equations in a general region. SIAM J. Control Optim. 27 (1989) 374-388. [CrossRef] [MathSciNet]
  14. C.-Y. Lin, Time-dependent nonlinear evolution equations. Differential Integral Equations 15 (2002) 257-270. [MathSciNet]
  15. S. Nicaise, M. Eller and J.E. Lagnese, Stabilization of heterogeneous Maxwell's equations by nonlinear boundary feedbacks. EJDE 2002 (2002) 1-26.
  16. S. Nicaise, Exact boundary controllability of Maxwell's equations in heteregeneous media and an application to an inverse source problem. SIAM J. Control Optim. 38 (2000) 1145-1170. [CrossRef] [MathSciNet]
  17. L. Paquet, Problèmes mixtes pour le système de Maxwell. Ann. Fac. Sci. Toulouse Math. 4 (1982) 103-141. [MathSciNet]
  18. A. Pazy, Semigroups of linear operators and applications to partial differential equations. Springer-Verlag,, Appl. Math. Sci. 44 (1983).
  19. K.D. Phung, Contrôle et stabilisation d'ondes électromagnétiques. ESAIM: COCV 5 (2000) 87-137. [CrossRef] [EDP Sciences]
  20. C. Pignotti, Observability and controllability of Maxwell's equations. Rend. Mat. Appl. 19 (1999) 523-546. [MathSciNet]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.