Free Access
Volume 9, March 2003
Page(s) 419 - 435
Published online 15 September 2003
  1. M. Fliess, J. Lévine, Ph. Martin and P. Rouchon, Flatness and defect of non-linear systems: Introductory theory and examples. Internat. J. Control 61 (1995) 1327-1361. [CrossRef] [MathSciNet]
  2. M. Fliess, Ph. Martin, N. Petit and P. Rouchon, Commande de l'équation des télégraphistes et restauration active d'un signal. Traitement du Signal 15 (1998) 619-625.
  3. M. Fliess and H. Mounier, Controllability and observability of linear delay systems: An algebraic approach. ESAIM: COCV 3 (1998) 301-314. (URL: [CrossRef] [EDP Sciences]
  4. M. Fliess and H. Mounier, Tracking control and Formula -freeness of infinite dimensional linear systems, edited by G. Picci and D.S. Gilliam, Dynamical Systems, Control, Coding, Computer Vision. Birkhäuser (1999) 45-68.
  5. M. Fliess, H. Mounier, P. Rouchon and J. Rudolph, Controllability and motion planning for linear delay systems with an application to a flexible rod, in Proc. 34th IEEE Conference on Decision and Control. New Orleans (1995) 2046-2051.
  6. M. Fliess, H. Mounier, P. Rouchon and J. Rudolph, Systèmes linéaires sur les opérateurs de Mikusinski et commande d'une poutre flexible. ESAIM Proc. 2 (1997) 183-193. ( [CrossRef] [EDP Sciences]
  7. M. Fliess, H. Mounier, P. Rouchon and J. Rudolph, Controlling the transient of a chemical reactor: A distributed parameter approach, in Proc. Computational Engineering in Systems Application IMACS Multiconference, (CESA'98). Hammamet, Tunisia (1998).
  8. F. John, Partial Differential Equations, 4th Edition. Springer-Verlag, New York (1991).
  9. B. Laroche, Ph. Martin and P. Rouchon, Motion planning for the heat equation. Int. J. Robust Nonlinear Control 10 (2000) 629-643. [CrossRef]
  10. A.F. Lynch and J. Rudolph, Flachheitsbasierte Randsteuerung parabolischer Systeme mit verteilten Parametern. Automatisierungstechnik 48 (2000) 478-486. [CrossRef]
  11. J. Mikusinski, Sur les équations différentielles du calcul opératoire et leurs applications aux équations aux dérivées partielles. Stud. Math. 12 (1951) 227-270.
  12. J. Mikusinski, Operational Calculus, Vol. 1. Pergamon, Oxford & PWN, Warszawa (1983).
  13. J. Mikusinski and Th.K. Boehme, Operational Calculus, Vol. 2. Pergamon, Oxford & PWN, Warszawa (1987).
  14. H. Mounier, J. Rudolph, M. Petitot and M. Fliess, A flexible rod as a linear delay system, in Proc. 3rd European Control Conference. Rome, Italy (1995) 3676-3681.
  15. N. Petit and P. Rouchon, Motion planning for heavy chain systems. SIAM J. Control Optim. 40 (2001) 275-495.
  16. N. Petit and P. Rouchon, Dynamics and solutions to some control problems for water-tank systems. IEEE Trans. Automat. Control AC-47 (2002) 594-609.
  17. I.G. Petrovskij, Über das Cauchysche Problem für Systeme von partiellen Differentialgleichungen. Mat. Sb. 2 (1937) 815-866.
  18. R. Rothfuß, J. Rudolph and M. Zeitz, Flachheit: Ein neuer Zugang zur Steuerung und Regelung nichtlinearer Systeme. Automatisierungstechnik 45 (1997) 517-525.
  19. W. Rudin, Real and Complex Analysis, 3rd Edition. McGraw-Hill (1987).
  20. J. Rudolph, Randsteuerung von Wärmetauschern mit örtlich verteilten Parametern: Ein flachheitsbasierter Zugang. Automatisierungstechnik 48 (2000) 399-406. [CrossRef]
  21. J. Rudolph and F. Woittennek, Flachheitsbasierte Steuerung eines Timoshenko-Balkens. Z. Angew. Math. Mech. 83 (2003) 119-127. [CrossRef] [MathSciNet]
  22. J.C. Simo, A finite strain beam formulation. The three-dimensional dynamic problem. Part one. Comp. Meths. Appl. Mech. 49 (1985) 55-70. [CrossRef]
  23. K. Yosida, Operational Calculus. Springer-Verlag (1984).
  24. K. Yuan, Control of slew maneuver of a flexible beam mounted non-radially on a rigid hub: A geometrically exact modelling approach, Vol. 204 (1997) 795-806.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.