Free Access
Issue |
ESAIM: COCV
Volume 9, February 2003
|
|
---|---|---|
Page(s) | 399 - 418 | |
DOI | https://doi.org/10.1051/cocv:2003019 | |
Published online | 15 September 2003 |
- R. Aris, The mathematical theory of diffusion and reaction of permeable catalysts. Clarendon Press, Oxford (1975). [Google Scholar]
- E. Acerbi and N. Fusco, Regularity for minimizers of non-quadratic functionals: The case 1<p<2. J. Math. Anal. Appl. 140 (1989) 115-135. [CrossRef] [MathSciNet] [Google Scholar]
- E. Acerbi and G. Mingione, Regularity results for a class of functionals with nonstandard growth. Arch. Rational Mech. Anal. 156 (2001) 121-140. [CrossRef] [Google Scholar]
- E. Acerbi and G. Mingione, Regularity results for quasiconvex functionals with nonstandard growth. Ann. Scuola Norm. Sup. Pisa 30 (2001). [Google Scholar]
- V. Chiadò Piat and A. Coscia, Hölder continuity of minimizers of functionals with variable growth exponent. Manuscripta Math. 93 (1997) 283-299. [CrossRef] [MathSciNet] [Google Scholar]
- A. Coscia and G. Mingione, Hölder continuity of the gradient of p(x)-harmonic mappings. C. R. Acad. Sci. Paris 328 (1999) 363-368. [Google Scholar]
- A. Dall'Aglio, E. Mascolo and G. Papi, Local boundedness for minima of functionals with non standard growth conditions. Rend. Mat. 18 (1998) 305-326. [Google Scholar]
-
A. Dall'Aglio and E. Mascolo,
-estimates for a class of nonlinear elliptic systems with non standard growth. Atti Sem. Mat. Fis. Univ. Modena (to appear). [Google Scholar]
- F. Leonetti, E. Mascolo and F. Siepe, Everywhere regularity for a class of vectorial functionals under subquadratic general growth, Preprint. Dipartimento di Matematica ``U. Dini", University of Florence. [Google Scholar]
- M. Giaquinta, Multiple integrals in the calculus of variations and non linear elliptic systems. Princeton Univ. Press, Princeton NJ, Ann. Math. Stud. 105 (1983). [Google Scholar]
- M. Giaquinta and G. Modica, Remarks on the regularity of the minimizers of certain degenerate functionals. Manuscripta Math. 57 (1986) 55-99. [CrossRef] [MathSciNet] [Google Scholar]
- E. Giusti, Metodi diretti nel calcolo delle variazioni. UMI, Bologna (1994). [Google Scholar]
- P. Marcellini, Regularity and existence of solutions of elliptic equations with (p,q)-growth conditions. J. Differential Equations 90 (1991) 1-30. [Google Scholar]
- P. Marcellini, Regularity for elliptic equations with general growth conditions. J. Differential Equations 105 (1993) 296-333. [CrossRef] [MathSciNet] [Google Scholar]
- P. Marcellini, Everywhere regularity for a class of elliptic systems without growth conditions. Ann. Scuola Norm. Sup. Pisa 23 (1996) 1-25. [Google Scholar]
- M. Marcus and V.J. Mizel, Continuity of certain Nemitsky operators on Sobolev spaces and chain rule. J. Anal. Math. 28 (1975) 303-334. [CrossRef] [Google Scholar]
- E. Mascolo and G. Papi, Local boundedness of integrals of Calculus of Variations. Ann. Mat. Pura Appl. 167 (1994) 323-339. [CrossRef] [MathSciNet] [Google Scholar]
- A.P. Migliorini, Everywhere regularity for a class of elliptic systems with p, q growth conditions. Rend. Istit. Mat. Univ. Trieste XXXI (1999) 203-234. [Google Scholar]
- A.P. Migliorini, Everywhere regularity for a class of elliptic systems with general growth conditions, Ph.D. Thesis. University of Florence, Italy (2000). [Google Scholar]
- J. Mosely, A two dimensional Dirichlet problem with an exponential nonlinearity. SIAM J. Math. Anal. 14 5 (1983) 719-735. [Google Scholar]
- M. Ruzicka, Flow of shear dependent electrorheological fluids. C. R. Acad. Sci. Paris 329 (1999) 393-398. [Google Scholar]
- K.R. Rajagopal and M. Ruzicka, On the modeling of electrorheological materials. Mech. Res. Commun. 23 (1996) 401-407. [CrossRef] [Google Scholar]
- K. Uhlenbeck, Regularity for a class of non-linear elliptic systems. Acta Math. 138 (1977) 219-240. [Google Scholar]
- V.V. ZhiKov, On Lavrentiev phenomenon. Russian J. Math. Phys. 3 (1995) 249-269. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.