Free Access
Volume 9, February 2003
Page(s) 207 - 216
Published online 15 September 2003
  1. Z. Artstein, Stability in the presence of singular perturbations. Nonlinear Anal. TMA 34 (1998) 817-827. [CrossRef] [Google Scholar]
  2. Z. Artstein and V. Gaitsgory, Tracking fast trajectories along a slow dynamics: A singular perturbations approach. SIAM J. Control Optim. 35 (1997) 1487-1507. [MathSciNet] [Google Scholar]
  3. I.U. Bronstein and A.Ya. Kopanskii, Smooth Invariant Manifolds and Normal Forms. World Scientific (1994). [Google Scholar]
  4. F. Colonius and W. Kliemann, The Dynamics of Control. Birkhäuser (2000). [Google Scholar]
  5. F. Colonius and W. Kliemann, On dynamic bifurcations in control systems, in Proc. IFAC Symposium on Nonlinear Control Systems (NOLCOS '01), 4-6 July 2001. St. Petersburg, Russia (2001) 140-143. [Google Scholar]
  6. J. Fischer, R. Guder and E. Kreuzer, Analyzing Perturbed Nonlinear Dynamical Systems, in Proc. 9th German-Japanese Seminar ``Nonlinear Problems in Dynamical Systems''. Straelen, Germany (to appear). [Google Scholar]
  7. G. Grammel, Averaging of singularly perturbed systems. Nonlinear Anal. TMA 28 (1997) 1855-1865. [Google Scholar]
  8. G. Grammel and P. Shi, On the asymptotics of the Lyapunov spectrum under singular perturbations. IEEE Trans. Automat. Control 45 (2000) 565-568. [CrossRef] [MathSciNet] [Google Scholar]
  9. S.M. Grünvogel, Lyapunov Spectrum and Control Sets, Dissertation Universität Augsburg. Augsburger Mathematische Schriften No. 34, Wißner Verlag, Augsburg (2000). [Google Scholar]
  10. S.M. Grünvogel, Lyapunov exponents and control sets near singular points. J. Differential Equations (to appear). [Google Scholar]
  11. H.K. Khalil, Nonlinear Systems. Prentice Hall (1996). [Google Scholar]
  12. P.V. Kokotovic, H.K. Khalil and J. O'Reilly, Singular Perturbation Methods in Control: Analysis and Design. Academic Press (1986). [Google Scholar]
  13. M.S. Soliman and J.M.T. Thompson, Stochastic penetration of smooth and fractal basin boundaries under noise excitation. Dynam. Stability Systems 5 (1990) 281-298. [MathSciNet] [Google Scholar]
  14. D. Szolnoki, Algorithms for Reachability Problems, Dissertation. Institut für Mathematik, Universität Augsburg, Augsburg (2001). [Google Scholar]
  15. D. Szolnoki, Set oriented methods for computing reachable sets and control sets. Discrete Contin. Dynam. Systems Ser. B (submitted). [Google Scholar]
  16. A. Vigodner, Limits of singularly perturbed control problems with statistical dynamics of fast motions. SIAM J. Control Optim. 35 (1997) 1-28. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.