Free Access
Issue
ESAIM: COCV
Volume 9, February 2003
Page(s) 485 - 508
DOI https://doi.org/10.1051/cocv:2003024
Published online 15 September 2003
  1. A. Bellaïche, The tangent space in sub-Riemannian geometry, edited by A. Bellaïche and J.-J. Risler, Sub-Riemannian Geometry. Birkhäuser, Progr. Math. (1996). [Google Scholar]
  2. A. Bellaïche, F. Jean and J.-J. Risler, Geometry of nonholonomic systems, edited by J.-P. Laumond, Robot Motion Planning and Control. Springer, Lecture Notes Inform. Control Sci. 229 (1998). [Google Scholar]
  3. A. Bellaïche, J.-P. Laumond and J. Jacobs, Controllability of car-like robots and complexity of the motion planning problem, in International Symposium on Intelligent Robotics. Bangalore, India (1991) 322-337. [Google Scholar]
  4. J.F. Canny, The Complexity of Robot Motion Planning. MIT Press (1988). [Google Scholar]
  5. W.L. Chow, Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung. Math. Ann. 117 (1940) 98-115. [CrossRef] [Google Scholar]
  6. G. Comte and Y. Yomdin, Tame geometry with applications in smooth analysis. Preprint of the IHP-RAAG Network (2002). [Google Scholar]
  7. M. Gromov, Carnot-Carathéodory spaces seen from within, edited by A. Bellaïche and J.-J. Risler, Sub-Riemannian Geometry. Birkhäuser, Progr. Math. (1996). [Google Scholar]
  8. W. Hurewicz and H. Wallman, Dimension Theory. Princeton University Press, Princeton (1948). [Google Scholar]
  9. F. Jean, Paths in sub-Riemannian geometry, edited by A. Isidori, F. Lamnabhi-Lagarrigue and W. Respondek, Nonlinear Control in the Year 2000. Springer-Verlag (2000). [Google Scholar]
  10. F. Jean, Complexity of nonholonomic motion planning. Int. J. Control 74 (2001) 776-782. [CrossRef] [MathSciNet] [Google Scholar]
  11. F. Jean, Uniform estimation of sub-Riemannian balls. J. Dynam. Control Systems 7 (2001) 473-500. [CrossRef] [MathSciNet] [Google Scholar]
  12. A.N. Kolmogorov, On certain asymptotics characteristics of some completely bounded metric spaces. Soviet Math. Dokl. 108 (1956) 385-388. [Google Scholar]
  13. I. Kupka, Géométrie sous-riemannienne, in Séminaire N. Bourbaki, Vol. 817 (1996). [Google Scholar]
  14. J.-P. Laumond, Controllability of a multibody mobile robot. IEEE Trans. Robotics Automation 9 (1993) 755-763. [CrossRef] [Google Scholar]
  15. J.-P. Laumond, S. Sekhavat and F. Lamiraux, Guidelines in nonholonomic motion planning for mobile robots, edited by J.-P. Laumond, Robot Motion Planning and Control. Springer, Lecture Notes Inform. Control Sci. 229 (1998). [Google Scholar]
  16. J. Mitchell, On Carnot-Carathéodory metrics. J. Differential Geom. 21 (1985) 35-45. [MathSciNet] [Google Scholar]
  17. T. Nagano, Linear differential systems with singularities and an application to transitive Lie algebras. J. Math. Soc. Japan 18 (1966) 398-404. [CrossRef] [MathSciNet] [Google Scholar]
  18. J.T. Schwartz and M. Sharir, On the ``piano movers" problem II: General techniques for computing topological properties of real algebraic manifolds. Adv. Appl. Math. 4 (1983) 298-351. [CrossRef] [Google Scholar]
  19. H.J. Sussmann, An extension of theorem of Nagano on transitive Lie algebras. Proc. Amer. Math. Soc. 45 (1974) 349-356. [CrossRef] [MathSciNet] [Google Scholar]
  20. A.M. Vershik and V.Ya. Gershkovich, Nonholonomic dynamical systems, geometry of distributions and variational problems, edited by V.I. Arnold and S.P. Novikov, Dynamical Systems VII. Springer, Encyclopaedia Math. Sci. 16 (1994). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.